

Keeping Emulation Environments Portable

FP7-ICT-231954

Architectural Design Document

Emulation Framework
Release 2.0.0 (February 2012)

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 2/72

Deliverable number Part of deliverable D2.3 (based on I2.2)

Nature Report

Dissemination level CO

Status Draft / Finalised / Reviewed / Final

Workpackage number WP2

Lead beneficiary TES

Author(s)
Bram Lohman (Tessella)
Edo Noordermeer (Tessella)

Document history

Revisions

Version Date Author Changes

0.1 09-06-2011 Bram Lohman Initial version

1.0 16-06-2011 Bram Lohman Prepared for release

1.1 21-12-2011 Edo Noordermeer Updated for release 1.1.0

2.0 28-12-2012 Edo Noordermeer Updated for release 2.0.0

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 3/72

1 Executive Summary

This document describes the architectural design for the Emulation Framework, part of the
KEEP project. The architectural design outlines the development of the Emulation
Framework.

The design follows the Scrum methodology, an iterative software development framework.
Major design decisions and motives are documented when made; once detailed component
design is completed the design is updated. The document covers the Core component.

The system context includes connections to external interfaces (both inputs and outputs)
such as technical registries used for Pathway generation, a Software Archive for Software
Package retrieval, an Emulator Archive for downloading Emulator Packages, and the
Graphical User Interface to control the system.

The overall system functionality is to provide the user with the best available environment to
render a digital object, and this can be broken down into several steps which are described
and shown in several workflow diagrams.

The system consists of several components: the Kernel component is the top level
component and communicates with and controls each of the other components. The
Characteriser takes care of digital objects identification by characterising the input file and
optionally connecting to one or more external registries to retrieve information about the
required technical environment. The Downloader connects to external systems such as an
Emulator Archive and Software Archive retrieve emulators and software required to render
the digital object. The Controller contains the logic to configure, run, and output the results of
each of the emulators running in the EF.

The EF stores certain information in an internal database, and uses a data access layer to
retrieve this information.

Interaction between the user or automated machines is handled via a documented API.

Java was chosen as the development language because of familiarity, widely supported
libraries and overall portability; for the internal database H2 was chosen because of the small
footprint and integrated web-interface. Software unit tests were used as a testing / debugging
strategy to ensure a guarantee a fully working code base.
To fulfil the requirement of supporting at least two emulators, initial support was focused on
Dioscuri (x86) and Vice (Commodore 64); the former because of the developer’s familiarity
with it and the popularity of the platform, the latter because of the maturity of the code and
popularity in the gaming community. Support for several other emulators has since been
added: Qemu (x86), UAE (Amiga), BeebEm (BBC Micro), JavaCPC (Amstrad CPC) and
Thomson Emulator (Thomson).

A glossary containing definitions of terms used in this document is included at the end of the
document.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 4/72

List of Related Documents

Description of Work [DoW] Overall project description

User Requirements Document [URD] Requirements for the Emulation Framework

Scrum Product Backlog [SPB] Development tasks and prototypes

System Maintenance Guide [SMG] Guide for developers and system administrators

Syste User Guide [SUG] Guide for end users and system administrators

Abbreviations

Koninklijke Bibliotheek KB

Tessella plc TES

Description of Work DoW

User Requirements Document URD

Architectural Design Document ADD

Emulation Framework EF

Unified Modelling Language UML

Simple Object Access Protocol SOAP

Web Services Description Language WSDL

File Information Tool Set FITS

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 5/72

2 Table of Contents

1 Executive Summary .. 3

2 Table of Contents .. 5

3 Introduction ... 7

3.1 Objectives and scope .. 7

3.2 Outline of this document ... 7

4 System overview ... 8

4.1 Overview and Context ... 8

4.1.1 Inputs ... 9

4.1.2 Outputs .. 10

4.1.3 Major System Functionality .. 10

4.2 Architectural Summary .. 12

5 System Components ... 13

5.1 Kernel .. 13

5.1.1 Business Logic .. 13

5.1.2 Class Descriptions ... 13

5.1.3 External Interfaces ... 14

5.2 Characteriser ... 15

5.2.1 Business Logic .. 15

5.2.2 Class Descriptions ... 16

5.2.3 External Interfaces ... 17

5.2.4 Libraries ... 17

5.3 Downloader ... 18

5.3.1 Business Logic .. 18

5.3.2 Class Descriptions ... 18

5.3.3 External Interfaces ... 19

5.4 Controller ... 19

5.4.1 Business Logic .. 19

5.4.2 Class Descriptions ... 19

5.4.3 Configuring emulators .. 20

5.4.4 Packaged emulators .. 25

5.4.5 External Interfaces ... 25

5.5 General purpose packages ... 25

5.5.1 Core class Descriptions ... 26

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 6/72

5.5.2 Util class Descriptions .. 26

5.6 Data Access Layer .. 27

5.6.1 Core Database .. 27

6 Prototypes.. 28

7 External components .. 29

7.1 Communication protocols .. 29

7.2 Emulator Archive ... 29

7.2.1 Emulator Archive prototype ... 29

7.3 Software Archive ... 29

7.3.1 Software Archive prototype .. 30

7.3.2 Software archive database tables .. 30

7.4 Technical registries ... 35

7.4.1 PRONOM / Planets Core Registry ... 36

7.4.2 UDFR ... 36

7.5 Characterisation .. 36

7.5.1 FITS ... 36

8 Core API ... 38

9 System-Wide Features .. 39

9.1.1 Language ... 39

9.1.2 Error-Handling ... 39

9.1.3 Automated Debugging, Testing and Diagnostics ... 39

9.1.4 Speed and Capacity .. 39

9.1.5 Statutory and Regulatory ... 39

10 Development Environment ... 40

10.1 Development language... 40

10.2 Internal database .. 40

10.3 Choice of emulators ... 41

10.4 Emulator configuration.. 41

10.5 Process control ... 42

Glossary .. 44

Appendix A: Emulator Archive WSDL .. 45

Appendix B: Software Archive WSDL .. 50

Appendix C: Core API .. 58

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 7/72

3 Introduction

This document describes the design of the Emulation Framework described in [DoW].

The design is based on the user requirements and the user scenarios specified in [URD].

This document forms the basis of the planning of the development phase. Since the
development follows an iterative approach, the results from the various development
iterations will be used to update the design to come to a complete architectural design. At the
end of the development the document can be used as a developer’s guide and as a basis for
writing a System Maintenance Guide.

3.1 Objectives and scope

This design will follow the agile software development methodology, which is based on
iterative development. The chosen methodology is Scrum, an iterative incremental
framework. The final system will be the result of several iterations of prototypes, expanding
and adding complexity during each iteration. Prototypes may implement a solution to a
particular issue that seems viable at the time, but at a later stage may hinder further
development. It is not unlikely that development will backtrack to resolve these issues and
result in different prototypes and / or a different design strategy.

Any such major design decisions will be documented here for future reference.

Motives for design decisions made during the project’s development phase will also be noted
in this design to ensure the complete design process is documented.

The focus of this design is on the Core; it only briefly covers the Graphical User Interface,
which has been classed as a separate component of the Emulation Framework. However,
the requirements of the GUI are also specified in [URD].

3.2 Outline of this document

This release of the design document focuses on a high-level design of the components.
Several assumptions have been made, and will be labelled as such.

The overall structure of the document is as follows:

Section 4 contains an overview of the architecture.

Section 5 describes the major system components.

Section 6 lists the prototypes that will be produced in the development phase.

Section 7 has information on external components.

Section 8 contains a brief discussion of the API of the Emulation Framework Core.

Section 9 describes various system-wide properties, such as multi-language support, error-
handling, etc.

Section 10, finally, discusses the development environment, in particular focussing on a
number of high-level design decisions.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 8/72

4 System overview

4.1 Overview and Context

The Emulation Framework allows rendering of digital files and computer games in their
native environment. This offers the potential to view these files in their intended ‘look and
feel’, independent from current state of the art computer systems. The spectrum of potential
computer platforms and applications that can be supported is practically unlimited.

Emulation is done by using existing emulators which are carefully selected on their capability
to mimic the functionality of these platforms. The following illustration shows how this works
in three steps.

A simplified context model diagram of the Emulation Framework, showing the flow of data
between the system and its environment across the system boundaries is as follows:

Emulation

Framework
Digital

collection

When a user requests an item
from a digital collection and
this item requires an old
computer environment to
render, the Emulation
Framework is used.

1

Emulator

The Emulation Framework
automatically selects and runs the
best available emulator and
configures the software
dependencies required to render
the object (operating system,
applications, etc.).

2

A virtual screen shows the
digital item with original
software of that time.

3

Figure 1: Emulation Framework workflow

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 9/72

Figure 2: Emulation Framework system context diagram

4.1.1 Inputs

Figure 2 shows the external inputs of the Emulation Framework. Dashed arrows indicate
optional inputs; these may not be necessary to complete the rendering of the digital object.

The human user will interact with the Emulation Framework via a GUI. This GUI will act as
the intermediate for all input/output the user has for the system. Two distinct GUIs have been
developed for the EF:

o Basic interface: offers the most common functionalities for setting up an
emulation environment for digital files.

o Comprehensive interface: offers advanced functionality, including options to
manage the Software Archive and Emulator Archive.

The Core also allows for communication with automated environments; these can use the
same API that the GUIs use.

The starting point for the EF is the digital object. This digital object is in the form of a
computer file, and can be classed as two types: as an ‘atomic’ file (e.g. PDF file or Word
document) or a ‘compound’ file (e.g. a compressed collection such as a ZIP/RAR file or a
standardized image format such as an ISO 9660 image or cartridge image). The digital
object may or may not include appropriate metadata describing it. This object is likely to
come from a digital archive located at the memory institutions, such as DNB’s Kopal, BnF’s
SPAR, or KB’s e-Depot.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 10/72

External technical registries provide the EF with a pathway describing the required hardware,
software and application to render the digital objects. Examples of such registries are
PRONOM1 / Planets Core Registry or the UDFR2.

The EF renders the selected digital object using emulators. These emulators are downloaded
from the Emulator Archive, an external database containing (certified) emulator packages.
An emulator package contains executable files to run the emulator, and associated metadata
describing the emulator’s hardware, configuration, etc.

The pathway for rendering a digital object consists not only of a description of a hardware
emulator, but also a description of software dependencies including operating system and
application. This software stack is retrieved from an external Software Archive, either as a
complete stack or as separate components. The Software Archive is likely to be located at
the memory institution; although shown as a separate component in the above figure for
clarity, it may be part of a single system comprising the digital archive, Emulator Archive and
Software Archive.

4.1.2 Outputs

All inputs mentioned in section 4.1.1 also act as outputs. Again, dashed arrows indicate
optional outputs.

Any user interaction with the EF will be shown as updates in the GUI. Also, any emulator
outputs, such as audio and video, are also returned to the GUI. Other functionality such as
capturing screenshots will also be presented to the user via the GUI.

The digital object may not only be read from but also written to. This allows the user to save
any progress made.

The technical registries will need to be supplied with either the full digital object or a
signature uniquely identifying it, for them to look up pathway information.

Prior to downloading emulator packages, one or more queries will be sent to the Emulator
Archive for a list of available emulators.

Similarly, the software archive will need to be queried for available content before software
can be retrieved from it.

4.1.3 Major System Functionality

The functionality of the EF is to provide the user with the best available environment to
render the digital object. This can be broken down into several steps, from set-up to usage.
During setup, an administrator installs and configures the EF. This is described in more detail
in [SMG] and [SUG].

An end-user can then start the EF, providing it with a digital object which may include
identifying and/or characterising metadata. The EF may need to contact an external registry
to obtain more information about the digital object; it will provide the registry with the required
information identifying the digital object (which may vary between registries), and request
possible rendering pathways. These pathways will be presented to the user for selection
and/or configuration; not all pathways may be viable depending on the available emulators
and software. Once the configuration and selection is complete, the pathway will be used to
set up the environment for the digital object. The environment usually consists of the digital
object, the rendering application and operating system plus any dependencies such as plug-
ins or fonts, and the emulator.

1
 PRONOM at The National Archives, http://www.nationalarchives.gov.uk/pronom/

2
 United Digital Formats Registry, http://www.gdfr.info/udfr.html

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 11/72

From this point on the EF will act as an intermediary between the user and the underlying
emulator, providing several functions independent of the selected emulator such as audio,
screen and video capture.

Figure 3 shows the workflow for the above steps.

Figure 3: EF ‘normal use’ workflow diagram

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 12/72

The dotted boxes around the workflows indicate the components responsible for the logic of
the workflow step.

4.2 Architectural Summary

The architecture of the main components in the system is shown in the UML Component
diagram below.

Figure 4: Core UML Component diagram

The socket connections show interfaces between components, while dashed arrows indicate
dependencies of components on files or databases. Components outside the EF boundaries
are not part of the system to be developed, but the EF relies on some of these to provide full
functionality.

Communication between the EF and external components will occur according to the
external component’s interface. These interfaces are included in this document as a
reference.

This diagram is a high-level overview of the system components, and as such may not
include all connections between the different components. Detailed sub-level components
and their functionality will be outlined in the following sections.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 13/72

5 System Components

The sections outline the main packages in the Core code base. A high-level description of
the package functionality, followed by a list of classes fulfilling the separate functions and any
connection to external interfaces, is given.

5.1 Kernel

5.1.1 Business Logic

The Kernel is the central component of the Core. It connects the internal components and
provides the external interface. This interface provides a path for the communication
between the external input and the component’s outputs.

The Kernel component will implement the following functionality:

• Provide the input interface

• Provide an observer interface

• Handle GUI/automated environment input

• Delegate work to other components

The implementation of a central component with well-defined communication between
internal components allows a modular structure to be built, and allows for easy replacement
of internal components. This modular structure also simplifies adding new functionality over
time.

As such, the Kernel is intended to translate high-level functionality into the required collection
of calls required for underlying components to complete the request. For example, a request
to generate pathways will result in the Kernel calling functionality to characterise the file,
generate a digital object identifier, ask the Characteriser to contact the technical registries
and return the resulting list of pathways.

5.1.2 Class Descriptions

The Kernel package consists of the following classes (all part of the eu.keep.kernel
package):

Class name Class type Class description

CoreEngineModel Interface Model interface for the Model-View-Controller design
pattern. Provides the external interface for
GUI/automated environments to control the EF

CoreObserver Interface Observer interface for the Model-View-Controller
design pattern. The Core Emulator Framework's model
(in the kernel module) will send out updates when the
model is changed.

Kernel Class Main class of the Core Emulation Framework.
Implements the model (in CoreEngineModel) for the
MVC pattern.

Delegates work to other components. As such,
contains class variables for the other components such
as Controller, Characteriser, etc.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 14/72

5.1.3 External Interfaces

The Kernel component provides an interface for the communication between the
GUI/automated environment and the Core. As business logic is separated from input and
presentation, the interface follows the Model-View-Controller (MVC) architectural pattern.
Examples of frameworks in Java that implement MVC are Java Swing3 for GUI frameworks
and Spring4 or Struts5 as (web-based) frameworks.

The Core model provides the following functionality:

Initialisation

• Retrieve Core property settings

• Register and remove observers

• Get and set a list of acceptable languages for Emulators and Software

• Add or remove a language from the of acceptable languages for Emulators and
Software

• Initialise the Core

• Stop the Core

Characterisation

• Characterise a digital object

• Retrieve a list of pathways for a file format

• Determine if the technical environment in a pathway can be build

Emulation

• Get and set emulator configuration options

• Prepare and generate the emulator configuration

• Match a (list of) emulators with a (list of) software images

• Find emulators that match a given pathway

• Find software that matches a given pathway

• Automatically select an appropriate pathway, format, software image or emulator

• Analyse the metadata accompanying a digital object

• Start an emulator based on a digital object (optionally including metadata or
pathways)

Emulator Archive

• Get list of Emulator packages from the Emulator Archive

• Get a list of supported hardware platforms from the Emulator Archive

• Get a list of emulators supporting a particular hardware platform or pathway

3
 http://java.sun.com/javase/6/docs/technotes/guides/swing

4
 http://www.springframework.org/

5
 http://struts.apache.org/

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 15/72

• Get a list of languages used by the emulators in the Archive.

Emulator Whitelist

• Get the list of ‘whitelisted’ emulators, that is, emulators that the user has selected for
emulation.

• Add or remove emulators from the whitelist

Software Archive

• Get list of Software images from the Software Archive

• Get a list of languages used by the software (both operating systems and
applications) in the Software Archive.

• Get a list of all supported file formats from the Software Archive.

• Get a list of software images that support a particular pathway

Technical Registries

• Configure the registry list based on user input

The full specification of the Model is included in the section External components

The Core provides the above specification in public methods; this means that
GUIs/automated environments also written in Java can use the Core as library, i.e. an
external jar file, to call the required methods.

5.2 Characteriser

5.2.1 Business Logic

The Characteriser provides functionality to connect to external technical registries for
collecting metadata and pathways of user-selected digital objects.

Registry configuration is stored in an external database. This data can then be accessed and
edited via the Software Archive, to configure the registry.

The Characteriser provides the following functionality:

• Store and update configuration of Technical Registries

• Characterise a digital object

• Add/remove repositories

• Connect to external repositories and retrieve digital object metadata / pathways

• Convert external repository information from custom format into internal, common
format

The Characteriser implements the APIs provided by external registries to retrieve digital
object metadata. This will include functionality to convert the retrieved metadata into a
generic internal format.

Currently the default technical registry is the prototype developed as part of the Software
Archive; the only available external registry is PRONOM, and a proof of concept has shown
that the Core can interface with this registry. The Characteriser uses the freely available
FITS tool for characterisation of digital objects. PRONOM and FITS are described in more
detail in section 7.

A flowchart of the functionality is depicted in the following figure:

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 16/72

Figure 5: Characteriser flowchart

The Characteriser uses the catalogue of repositories held by the external Software Archive,
containing the name, version, a short summary and URL of each repository. The user selects
which repositories are queried for pathways for the digital object.

For each external repository, a class will implement the generic Characteriser repository
interface, which contains common methods expected to be supported by the repositories
(generate identifier, lookup identifier, etc.) This allows the system to loop over the
implemented repositories and query them using generic methods.

When the system looks up a digital object using the specific implementations of the generic
interface, the results are amalgamated. The repository-specific pathways are converted to an
internal Core format, which is used by other Core components. During the conversion, the
system will also try to remove any discrepancies between repository results.

The final selection is passed back to the Kernel.

5.2.2 Class Descriptions

The Characteriser package consists of the following classes (all part of the
eu.keep.characteriser package):

Class name Class type Class description

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 17/72

Characteriser Class Holds registry functionality, such as importing
registries into the database, enabling registries for
lookup, and characterisation functionality, such as
characterising files, looking up pathways

FitsTool Class A wrapper class for the File Information Tool Set
(FITS)6 tool. It permits the identification and
characterisation of file formats using different tools,
reports conflicts.

Format Class Represents a file format that contains information
about its name, MIME type and a list of the reporting
tools. The Format object is represented by the file
format name, the MIME type and the list of reporting
tools that were used to identify the file format

sub package registry

PronomRegistry Class Represents PRONOM's implementation of the Registry
interface. Currently a stub since the registry has not
been updated yet for allowing this interaction between
the two systems.

Registry Interface Represents the Registry interface for technical
registries that are supposed to hold information about
file formats and associated technical environments
with digital preservation, i.e. migration and emulation in
mind.

UDFRRegistry Class Represents UDFR's implementation of the Registry
interface. Currently a stub since the registry has not
been updated yet for allowing this interaction between
the two systems.

The characteriser uses a Pathway class, generated from the XSD schema in the Software
Archive, to represent the emulation pathway or viewpath. Such a pathway consists of a
structured description of the complete hardware and software stack needed to render a
digital object. This usually consists of four layers (file format, rendering application, host
Operating System and finally an hardware platform), but may have more or less, e.g. some
console game do not need the rendering application since it is usually bundled with the OS.

5.2.3 External Interfaces

See section 7 for APIs to external registries.

5.2.4 Libraries

The Characteriser uses the FITS tool, created by the Harvard University Library Office for
Information Systems. It “identifies, validates, and extracts technical metadata for various file
formats. It wraps several third-party open source tools, normalizes and consolidates their
output, and reports any errors.”7

See section 7.5.1 for more details on FITS.

6
 http://code.google.com/p/fits/

7
 Ibid

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 18/72

5.3 Downloader

5.3.1 Business Logic

The Downloader component handles all functionality related to retrieving external data. This
includes emulator packages, software packages, and pathway information.

Emulator packages (which contain specific metadata) can be retrieved from an external
database. The emulators are then available for use within the Core; the metadata is used to
determine which emulator can fulfil the pathway requirements.

Software packages are retrieved based on pathway information from an external database.
These are provided to the Controller for emulator configuration.

Both emulator and software packages are retrieved when required and not stored locally.
This means that a connection to an Emulator Archive and Software Archive is required for full
functionality.

The Downloader provides the following functionality:

• Retrieve information and emulator packages from, and download emulator binaries
from an Emulator Archive

• Retrieve information and software packages from, and download software images
from a Software Archive

To contact, retrieve, and download packages/images from the Emulator Archive and
Software Archive, the Downloader implements the API provided by these services.

5.3.2 Class Descriptions

The Downloader package consists of the following classes (all part of the
eu.keep.downloader package, with sub-packages indicated):

Class name Class
type

Class description

DataAccessObject Interface Database interface for storing information in the
local database

Downloader Class The Downloader component handles all
functionality related to downloading and storing
external data. This includes emulator packages,
software packages, and registry configurations.

EmulatorArchive Interface Interface to the Emulator Archive, the webservice
providing emulator package metadata and binary
files

SoftwareArchive Interface Interface to the Software Archive, the webservice
providing software package metadata and binary
files

sub package db

DBRegistry Class Object representation of Registries stored in the
external database of the Software Archive. This is
an extension of the class RegistryType that is
generated from the XSD pathway-schema in the
Software Archive.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 19/72

DBUtil Class Common database utilities (setting up / tearing
down a connection, etc.)

EmulatorArchivePrototype Class A prototype implementation of the
EmulatorArchive, acting as client for Emulator
Archive webservices.

H2DataAccessObject Class H2 database implementation of the
DataAccessObject interface.

SoftwareArchivePrototype Class A prototype implementation of the
SoftwareArchive, acting as client for Software
Archive webservices.

5.3.3 External Interfaces

The prototype classes for the Emulator Archive and Software Archive make use of WSDLs,
Web Services Description Language files, an XML based protocol for information exchange
in decentralized and distributed environments, to generate the relevant APIs. These WSDLs
are included in section 7.

The local database tables are described in section 5.6.1.

5.4 Controller

5.4.1 Business Logic

The Controller configures and runs the emulator selected by the Kernel based on the
pathway. It selects and sets up the correct emulator configuration, based on technical
environment metadata. It presents the emulator’s video and audio output and accepts input
for controlling the emulator. Although currently not implemented, it is intended that audio and
video streams from the emulator are made accessible so they can be recorded.

The Controller component will implement the following functionality:

• Configure, start and run selected emulators

• Handle user input to emulator

• Present video and audio results of emulator to user

• Load user-selected digital object into emulator

5.4.2 Class Descriptions

The Controller package consists of the following classes (all part of the eu.keep.controller
package, with sub-packages indicated):

Class name Class
type

Class description

Controller Class Entry point for the Controller package. This class
contains methods to retrieve files (BLOBs) such as
emulator packages from the local database and
accept software images

ConfigEnv Class Holds information about the configuration

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 20/72

environment

sub package emulatorConfig

FMTemplateHelper Class Template helper class for Freemarker
implementation. Contains general template
functionality

SimpleTemplateBuilder Class Class to build an emulator's configuration using a
simple template. Implements TemplateBuilder

TemplateBuilder Interface This interface defines the methods that the
different classes of template builders (simple for
basic configuration such as 'autorun', 'floppy disks';
complex for 'memory size', 'cpu bits', etc.) should
implement to be able to generate a configuration
for an emulator.

sub package emulatorRunner

EmulatorProcessManager Class Manager of emulation processes that keep tracks
of currently running processes

NativeEmulatorRunner Class Class used for starting/stopping an emulation
process. Uses the NativeRunner class to launch a
native executable and uses the owner (parent
class) to start and kill the newly created process.

NativeRunner Class Class for starting executables as external
processes in new threads

5.4.3 Configuring emulators

Using a Java classes via a builder pattern (deprecated)

Initially, configuring emulators was done using custom Java classes written specifically for
each emulator (and version). These were applied using a builder pattern to create a specific
emulator configuration. Each of these configuration classes had to implement an interface
class describing the different methods used by the core, e.g. build the command line string
(to be called subsequently by the NativeRunner class), or wrap bare digital objects into an
appropriate disk image.

These Java classes were part of the emulator packages, and not directly part of the
framework. It was thought that this approach was slightly cumbersome as it required
emulator developers to write custom Java classes, as well as the framework importing class
files from the emulator packages. A method where emulator configurations could be added
dynamically (i.e. at runtime) without having to change (i.e. add new classes) and recompile
the code was needed.

Using template processing

As an alternative to the builder pattern, templates, a processing element that can be
combined with a data model and processed by a template engine to produce a result
document, were used. This allowed emulator developers to write their custom templates in
pseudo-code (rather than Java code), and offered greater flexibility by reading these
templates at run-time when unpacking and configuring an emulator. Figure 6 illustrates the
processing flow of a template engine. It consists of a data model, which is a source of
preformatted data to be used in the result; a template, which contains the output format of
the data; a template engine, which combines the data and the template to produce the result,

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 21/72

a document specifically formatted according to the template containing the data from the
data model.

In the EF, each emulator package will provide a template, which combined with the data
model in the EF, and a specific Java template engine, will result in an emulator specific
configuration file

Figure 6: A diagram illustrating all of the basic elements and processing flow of a template
engine

Template data model

A visualisation of the data model used in the EF is as follows:

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 22/72

Figure 7: Visualisation of Emulation Framework template data model

Each variable has a string value; some of the branches shown are complex structures (of
which there may be more than one of each type within the model) which consist of multiple
string values. The emulator template can use any of these variables to generate the
necessary configuration file, be it in command-line form, XML format, or as properties file.
Not all variables may need to be set (for example, many console emulators have no notion of
the drive parameters or contain a fixed disk), but may use a subset of the above.

It should be noted that only the above variables can be used as configurable values for the
emulator configuration; however, this should not stop the configuration from containing
emulator-specific options based on the values of the variables.

An example of use is given below.

StringTemplate (deprecated)

The first template engine used was the StringTemplate engine8. This template was chosen
for its simplicity, but also for its use of template interfaces and groups. The former forced
template files to adhere to a pre-defined template interface, ensuring robustness by making
all emulator configuration templates contain specific ‘methods’ and signatures. Any template
errors could be caught early in the process by matching the template to the interface.

8
 http://www.stringtemplate.org/

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 23/72

The latter allowed specific parts of the template to be called on demand; one of the uses for
this was separating the template into ‘preamble’, ‘body’, and ‘postscript’ sections. This
allowed specific order in the template, which could be passed to the EmulatorRunner class.
An example here is that Java emulators require ‘java –jar’ to be given prior to the executable,
and other options such as ‘-Xmx1024m’ after the executable (e.g. ‘java –jar Dioscuri.jar –
Xmx1024m’). Passing the template in sections to the runner class allowed it to group these in
the right order, since the executable was retrieved from the emulator package itself, not the
template.

However, it was soon discovered that the StringTemplate engine uses hardcoded separator
values when it is passed a list of template directories, which caused the loading to fail on
certain environments (notably absolute paths in Windows containing the ‘:’ and ‘/’
characters). It was decided to abandon the library rather than try to work around these
issues.

Freemarker

As a substitute to StringTemplate, the Freemarker template engine was chosen9. Freemarker
is another relatively simple but popular template engine that does not seem to suffer from the
above path loading issue. However, it does not support template interfaces nor template
groups, so the templates had to be re-written to be able to support the sectioning; it was
decided that the interface support was a nice feature but the lack of it not a showstopper. In
any case, the Freemarker engine has an ‘attribute’ directive allows some level of self-
description to be defined within the template.

To support sectioning, each template uses a specific string (‘##Section: ${section}##’) to
indicate the start of a section. The output result is split based on these strings.

An example template is as follows:

<#ftl attributes={"configDir":"configDir", "configFile":"configFile",
"digobj":"digobj", "fixedDisks":{"enabled":"enabled",
"index":"index", "master":"master", "cylinders":"cylinders",
"heads":"heads", "sectorsPerTrack":"sectorsPerTrack",
"swImg":"swImg"}, "floppyDisks":{"type":"type", "num":"num",
"digobj":"digobj", "inserted":"inserted"}}>
<#-- Vice 2.2 configuration template (CLI) -->

<#-- Floppy drive letter definition -->
<#assign floppyDriveLetter = {"0":"8", "1":"9", "2":"10", "3":"11"}>

<#-- Drive type definition -->
<#assign driveTypes = {"525_720":"unsupported drive",
"3.5_144":"unsupported drive", "C64_1541":"1541", "C64_1741":"1741"}>

<#-- Seperator macro -->
<#macro separator section="undefined">
##Section: ${section}##
</#macro>

<#-- Floppy drive macro -->
<#macro floppyDisk item>
<#if item.type?has_content >
-drive${floppyDriveLetter[item.num]}type
${driveTypes[item.type]}
-${floppyDriveLetter[item.num]}
"${item.digobj}"
</#if>
<#if item.inserted == "true">
+truedrive

9
 http://freemarker.sourceforge.net/

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 24/72

<#else>
-truedrive
</#if>
</#macro>

<#-- Start of preamble -->
<@separator section="preamble"/>
<#-- Start of body -->
<@separator section="body"/>
-autostart
"${digobj}"
<#list floppyDisks as floppy>
 <@floppyDisk item=floppy/>
</#list>
<@separator section="postscript"/>
<#-- Start of postscript -->

This template defines its structure in the #ftl tag, which corresponds to the data model. It then
contains two hashes for looking up emulator-specific values for the floppy drive letter and
drive types (‘floppyDriveLetter’ and ‘driveTypes’); the EF uses a 0-based index to define
floppy drives based on the number of digital object requiring floppy drives and specific strings
for the drive type. After that it defines two macro’s that can be called as functions (with
variables) in the template body (‘separator’ and ‘floppyDisk’). Using a macro will produce a
similar section containing different values. This can either be called multiple times in the
template itself (e.g. ‘separator’), or the data model may define multiple sequences for a
variable (e.g. ‘floppyDisk’).

Although this template defines the full data model, it only uses the variables ‘digobj’, and
‘floppy.type’, ‘floppy.num’, ‘floppy.digobj’, ‘floppy.inserted’. The rest may be set but are not
used in the template.

The EF will query the template for the data model (retrieving it from the ftl tag), which will
serve as the basis of the configuration. It contains some logic to generate default
configurations based on the emulator environment, digital objects, configuration directories
and software images, or it can ask the user to fill in the values.

Once a data model has been assigned values, it can be passed to the template to produce
the required results, as shown below:

Data model:

{fixedDisks=[], floppyDisks=[{inserted=true, num=0, digobj=test
Data\IKPlus.d64, type=C64_1541}, {inserted=false, num=1, digobj=test
Data\arkanoid.d64, type=C64_1741}],
root=[{configFile=noConfFileDefined, digobj=test Data\IKPlus.d64,
configDir=.\cef\exec\3831e3da-afa6-4709-8f3b-a47878069dd0}

Output:

##Section: preamble##
##Section: body##
-autostart
"test Data\IKPlus.d64"
-drive8type
1541
-8
"test Data\IKPlus.d64"
+truedrive
-drive9type
1741
-9
"test Data\arkanoid.d64"

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 25/72

-truedrive
##Section: postscript##

This output will be parsed by the EF into three sections, of which only the body section will
contain any data.

5.4.4 Packaged emulators

Several emulators have been included in the EF; for several others, there were issues which
prevented these from successfully including them in the EF. The table below summarises the
progress

Emulator Operating
System

Version Included Notes

Beebem10 Linux 0.0.13 Yes

Windows 4.13 Yes

Dioscuri11 Linux

Windows

0.7.0

0.7.0

Yes

Yes

JavaCPC12 Linux

Windows

1.1 Yes

Yes

QEMU13 Linux 0.13.0 Yes Statically compiled

Windows 0.9.0 Yes

UAE14 Linux 0.8.29 Yes

Windows 1.6 Yes

Vice15 Linux 2.2 Yes

Windows 2.2 Yes

Thomson Windows 1.0 Yes

5.4.5 External Interfaces

5.5 General purpose packages

There are several packages that serve general purpose functionality. Most notably these are
the Core package, which serves as a command-line front-end for running, testing and
debugging the Core from the command line, and the Util package, which contains common
file and XML utilities used in other packages.

10

 http://www.mkw.me.uk/beebem/

11
 http://dioscuri.sourceforge.net/

12
 http://sourceforge.net/projects/javacpc/

13
 http://wiki.qemu.org/Main_Page

14
 http://www.amigaemulator.org/

15
 http://www.viceteam.org/

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 26/72

The Core package makes use of BeanShell16, a “small, free, embeddable, source level Java
interpreter with object based scripting language featuresUBeanShell dynamically executes
standard Java syntax and extends it with common scripting conveniences such as loose
types, commands, and method closures like those in Perl and JavaScript”17

5.5.1 Core class Descriptions

The Core package consists of the following classes (all part of the eu.keep.core package):

Class name Class type Class description

CandidatesCompletionHandler Class JLine support class

ClassAndFileCompletor Class JLine support class

ClassMap Class A class that holds all classes, and their
methods, in the classpath. Used for auto-
completion

EFCliAutoComp Class A class to test the EF through a command
line interface (CLI). The CLI accepts valid
Java code in a dynamic, scripted fashion
by using BeanShell's
<code>Interpreter</code> class. The
commands entered by the user are read
using the 3rd party library JLine.

Implements the CoreObserver interface

5.5.2 Util class Descriptions

The Util package consists of the following classes (all part of the eu.keep.util package):

Class name Class
type

Class description

ArchiveException Class Exception thrown when the Software and/or
Emulator Archive can not be reached

DiskImage Abstract Common utilities used to generate a disk image

DiskUtilities Class Common shared disk image utilities, such as CHS
calculation, etc

EmulatorSandbox Class Modified SecurityManager for running emulator in a
sandbox environment where certain actions are
disabled.

FileUtilities Abstract Common shared file utilities, such as copy, unzip,
etc

FloppyDiskImage Class Utilities to generate a floppy disk image. Currently
supports very simplistic 1.44 MB FAT12 floppy
disks. Information taken from
http://en.wikipedia.org/wiki/FAT_16 and Linux's

16

 http://www.beanshell.org/

17
 Ibid

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 27/72

mkdosfs

FloppyDiskType Enum Enumeration of the different floppy disk types
supported

VariableFixedDiskImage Class Utilities to generate a fixed disk image. Currently
supports very simplistic FAT16 fixed disks, of
varying size. Information taken from
http://en.wikipedia.org/wiki/FAT_16 and Linux's
mkdosfs

XMLUtilities Class Common shared XML utilities, such as validate,
marshall/unmarshall, etc

Language Enum Enumeration of the different languages, used by
emulators, software or the EF itself, that the EF
supports.

PathwayUtil Class Util class to create a String representation of a
Pathway object

5.6 Data Access Layer

There are several places where the Core accesses data.

Locally there is a database containing metadata used by the Core.

Externally, there are repositories that the Characteriser component accesses for retrieval of
pathways and technical environment metadata. These databases, such as
PRONOM/Planets Core Registry or UDFR, are expected to have an open API available that
can be implemented in the Characteriser. These APIs are described in section 7.

There are also expected to be external databases of (certified) emulator packages, the
Emulator Archive, and software images, the Software Archive. The Downloader will contact
these to download the relevant data for use within the framework. APIs for these systems
also described in section 7.

5.6.1 Core Database

This database contains data used within the Core. Currently, the Core database consists of a
single table only, listed below:

Table 1: Core Database tables

Table name Description

Emulator_whitelist ‘Whitelisted’ emulators, those that are allowed to be used when
rendering an environment

Table 2: Emulator_whitelist table

Attribute Data Type Description

Emulator_ID Large, unsigned integer Unique emulator identifier from
Emulator Archive

Emulator_descr Variable length string (up to 500
characters)

Emulator description

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 28/72

6 Prototypes

The design of the EF is based around a sequence of prototypes, where each subsequent
iteration includes more functionality. The final product should provide the functionality of the
EF as described in [URD].

This approach was chosen to facilitate design, allow simple implementation to show where
bottlenecks lie, and defer implementation until user requirements are properly elicited.

[DoW] mandates the release of two prototypes:

Sequence Details Delivery
date

1 Prototype of working EF with set of emulator modules for
hardware components of the selected target environments

M19 (August
2010)

2 Second prototype of EF with set of emulator modules for
hardware components of the selected target environments

M24 (May
2011)

The Scrum Product Backlog [SPB] estimates a larger number of prototypes, as there have
be around 10 four-week sprints, each resulting in a working prototype. It is expected a small
number of these will be publicly released, of which two will be the [DoW] mandated prototype
releases named above.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 29/72

7 External components

7.1 Communication protocols

The communication with the external components (Emulator Archive, Software Archive) is
implemented using web services; more specifically, they are defined on the Application Layer
using Simple Object Access Protocol (SOAP). In code a description of the operations is
given using the Web Services Description Language (WSDL).

The use of WSDLs leaves the implementation of the communication free to use any style of
web services: SOA or REST.

7.2 Emulator Archive

The Emulator Archive is a database containing certified packages of emulators. The
certification indicates it is known to run successfully in the Emulation Framework, and the
package contains the required metadata for configuration and pathway generation.

Such an archive should support at least the following:

• a web-service that takes a blank input and returns a list of emulators, including their
version and an identification number for each emulator.

• a web-service that takes a blank input and returns a list of supported hardware,
including an identification number for each hardware type.

• a web-service that takes an identifier of a hardware type as an input and returns a list
of emulators, including their version and an identification number, which supports the
hardware type.

• a web-service that takes an identifier of an emulator as an input and returns a binary
file containing the emulator and metadata.

• A web-service that takes a blank input and returns a list of all languages (e.g. English,
French) that are used by one or more emulators.

7.2.1 Emulator Archive prototype

For proof-of-concept and testing purposes, a simple prototype was written that supported the
above functions. The accompanying WSDL is included in Appendix A: Emulator Archive
WSDL

7.3 Software Archive

The Software Archive is a database containing hardware-specific software images. These
images contain specific applications and libraries, which allow the Core to build a technical
environment (hardware, operating system, application) for a digital object by choosing an
emulator (hardware) and selecting an appropriate image (application, operating system) from
the Software Archive. Linking it to the digital object then completes the pathway.

At the time of writing, no public software archives were known to exist. However, memory
institutions may have digital depots that provide this functionality. Such an archive should
support at least the following:

Contents

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 30/72

• a web-service that takes a blank input and returns a list of file formats, including a
version number and an identification number for each file format.

• a web-service that takes a blank input and returns a list of software packages,
including a version number and an identification number for each package.

• a web-service that takes a blank input and returns a list of operating systems,
including a version number and an identification number for each OS.

• A web-service that takes a blank input and returns a list of all languages (e.g. English,
French) that are used by one or more operating systems or applications.

File formats

• a web-service that takes an identifier of a file format as an input and returns a binary
file containing the complete software stack, consisting of some or all of the software
package, software package plug-ins, operating system and metadata.

• A web-service that takes a file format identifier returned by the external registry,
together with the name of a translation table in the internal database, and returns the
ID and name of the corresponding EF internal file format.

Software packages

• a web-service that takes an identifier of a software package as an input and returns a
binary file containing the software package and metadata.

Registries

• a web-service that takes a blank input and returns a list of registries

• a web-service that takes as input metadata for a list of registries, updates the
corresponding registry entries in its internal database, and returns true or false to
indicate success or failure.

• A web-service that takes as input metadata for a list of registries, and replaces the
existing registry metadata in its internal database with the new data. It must return
true or false to indicate success or failure.

7.3.1 Software Archive prototype

For proof-of-concept and testing purposes, a simple prototype was written that supported
image selection based on application, operating system and image format. The software
archive prototype is a simple database (the H2 database was used), that, together with an
Apache CXF front-end, can serve software images from a remote location.

The accompanying WSDL is included in Appendix B: Software Archive WSDL

7.3.2 Software archive database tables

Table 3: Fileformats table

fileformats

Attribute Data Type Description

Fileformat_ID Variable length string (up to 16
characters)

File format ID

Name Variable length string (up to 250
characters)

File format name

Version Variable length string (up to 250
characters)

File format version

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 31/72

Description Variable length string (up to 1000
characters)

Description of the file format

Reference Variable length string (up to 500
characters)

Any references for more information on
the file format

Table 4: Languages table

languages

Attribute Data Type Description

Language_ID Fixed length string (2 characters) Language id

Table 5: Opsys table

opsys

Attribute Data Type Description

Opsys_ID Variable length string (up to 16
characters)

Operating System primary key

Name Variable length string (up to 250
characters)

Name of the OS

Version Variable length string (up to 250
characters)

Version of the OS

Description Variable length string (up to 500
characters)

Short description of the Operating
System

Creator Variable length string (up to 500
characters)

Operating system creator

Release_date Variable length string (up to 500
characters)

Operating system release date

License Variable length string (up to 500
characters)

Operating system license

Language_Id Fixed length string (2
characters)

Reference to languages table

Reference Variable length string (up to 500
characters)

Any references for more information
on the operating system

User_instructions CLOB Short user instructions

Table 6: Apps table

Apps

Attribute Data Type Description

app_ID Variable length string (up to 16
characters)

Application primary key

Name Variable length string (up to 255
characters)

Name of the application

Version Variable length string (up to 255
characters)

Version of the application

Description Variable length string (up to 255
characters)

Short description of the application

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 32/72

Creator Variable length string (up to 500
characters)

Application creator

Release_date Variable length string (up to 500
characters)

Application release date

License Variable length string (up to 500
characters)

Application license

Language_Id Fixed length string (2
characters)

Reference to languages table

Reference Variable length string (up to 500
characters)

Any references for more information
on the application

User_instructions CLOB Short user instructions

Table 7: Platforms table

platforms

Attribute Data Type Description

platform_ID Variable length string (up to 16
characters)

Platform primary key

Name Variable length string (up to 255
characters)

Name of the platform

Description Variable length string (up to 255
characters)

Short description of the platform

Creator Variable length string (up to 500
characters)

Platform creator

Production_start Variable length string (up to 500
characters)

Platform production start date

Production_end Variable length string (up to 500
characters)

Platform production end date

Reference Variable length string (up to 500
characters)

Any references for more information
on the platform

Table 8: Disk images table

images

Attribute Data Type Description

image_ID Variable length string (up to 16
characters)

Disk image primary key

Description Variable length string (up to 255
characters)

Short description of the disk
image

imageformat_id Variable length string (up to 16
characters)

Reference to imageformats
table

platform_id Variable length string (up to 16
characters)

Reference to platforms table

Table 9: Disk image file system architecture (format) table

imageformats

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 33/72

Attribute Data Type Description

imageformat_ID Variable length string (up to 16 characters) Image primary key

Name Variable length string (up to 250 characters) Name of the format

Table 10: Disk image BLOBs table

imageblobs

Attribute Data Type Description

image_ID Foreign key Reference to images table

image BLOB Disk image binary

Table 11: Fileformats to Application table

fileformats_apps

Attribute Data Type Description

fileformat_ID Foreign key Reference to fileformats table

app_id Foreign key Reference to apps table

Table 12: Fileformats to Operating Systems table

fileformats_opsys

Attribute Data Type Description

fileformat_ID Foreign key Reference to fileformats table

opsys_id Foreign key Reference to opsys table

Table 13: Fileformats to Platforms table

fileformats_platform

Attribute Data Type Description

fileformat_ID Foreign key Reference to fileformats table

platform_id Foreign key Reference to platforms table

Table 14: Applications to Operating Systems table

apps_opsys

Attribute Data Type Description

app_ID Foreign key Reference to apps table

opsys_id Foreign key Reference to opsys table

Table 15: Applications to Images table

apps_images

Attribute Data Type Description

app_ID Foreign key Reference to apps table

image_id Foreign key Reference to images table

Table 16: Operating Systems to Platforms table

opsys_platform

Attribute Data Type Description

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 34/72

opsys_ID Foreign key Reference to opsys table

platform_id Foreign key Reference to platform table

Table 17: Operating Systems to Images table

opsys_images

Attribute Data Type Description

opsys_ID Foreign key Reference to opsys table

image_id Foreign key Reference to images table

Table 18: EF_PCR_fileformats table

EF_PCR_fileformats

Attribute Data Type Description

PCR_ff_ID Variable length string (up to 16
characters)

Foreign key from PCR_fileformats
table

EF_ff_ID Variable length string (up to 16
characters)

Foreign key from EF_fileformats table

Table 19: PCR_Fileformats table

PCR_fileformats

Attribute Data Type Description

Fileformat_ID Variable length string (up to 16 characters) File format ID

Name Variable length string (up to 250 characters) File format name

Table 20: Registries tables

registries

Attribute Data Type Description

Registry_ID Large, unsigned integer Emulators primary key

Name Variable length string (up to 255
characters)

Name of the registry

URL Variable length string (up to 255
characters)

URL of the registry

Class_name Variable length string (up to 255
characters)

Java .class file associated with
registry

Translation_view Variable length string (up to 500
characters)

Database view used for
translating IDs

Enabled Boolean Registry is used during pathway
lookup

Description Variable length string (up to 255
characters)

Short description of the registry

Comment Variable length string (up to 255
characters)

Short comment of the registry

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 35/72

7.4 Technical registries

The Emulation Framework may use several registries to gather pathway information and/or
technical environment metadata if the metadata provided with the digital object proves
insufficient. These registries should support at least the following:

Contents

• a web-service that takes a blank input and returns a list of file formats, including a
version number and an identification number for each format.

• a web-service that takes a blank input and returns a list of software packages,
including a version number and an identification number for each package.

• a web-service that takes a blank input and returns a list of operating systems,
including a version number and an identification number for each OS.

• a web-service that takes a blank input and returns a list of hardware types, including
a version number and an identification number for each type.

• a web-service that takes a blank input and returns a list of emulators, including a
version number and an identification number for each emulator.

File formats

• a web-service that takes an identifier of a file format as an input and returns a list of
software packages, including their version and an identification number, which
support the file format.

• a web-service that takes an identifier of a file format as an input and returns a list of
operating systems, including their version and an identification number, which support
the file format.

• a web-service that takes an identifier of a file format as an input and returns a list of
hardware types, including their version and an identification number, which support
the file format.

• a web-service that takes an identifier of a file format as an input and returns a list of
emulators, including their version and an identification number, which support the file
format.

• a web-service that takes an identifier of a file format as an input and returns a list of
pathways, consisting of some or all of the software packages, hardware types, and
emulators, including their version and an identification number, which support the file
format.

Software packages

• a web-service that takes an identifier of a software package as an input and returns a
list of operating systems, including their version and an identification number, which
support the software package.

• a web-service that takes an identifier of a software package as an input and returns a
list of hardware types, including their version and an identification number, which
support the software package.

• a web-service that takes an identifier of a software package as an input and returns a
list of emulators, including their version and an identification number, which support
the software package.

• a web-service that takes an identifier of a software package as an input and returns a
list of pathways, consisting of some or all of the hardware types and emulators,

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 36/72

including their version and an identification number, which support the software
package.

Operating systems

• a web-service that takes an identifier of an operating system as an input and returns
a list of hardware types, including their version and an identification number, which
support the operating system.

• a web-service that takes an identifier of an operating system as an input and returns
a list of emulators, including their version and an identification number, which support
the operating system.

• a web-service that takes an identifier of an operating system as an input and returns
a list of pathways, consisting of some or all of the hardware types and emulators,
including their version and an identification number, which support the operating
system.

Hardware types

• a web-service that takes an identifier of a hardware type as an input and returns a list
of emulators, including their version and an identification number, which support the
hardware type.

Whether reverse lookups of the pathways are also required (e.g. given an emulator identifier,
return the hardware types it supports) will be determined at a later stage.

7.4.1 PRONOM / Planets Core Registry

PRONOM is an on-line information system about data file formats and their supporting
software products. Originally developed to support the access to and long-term preservation
of electronic records held by the National Archives, PRONOM has been made available as a
resource for anyone requiring access to this type of information.

The PRONOM API is described in several WSDLs18; however, the required methods above
are in the process of implementation. When the API becomes available, it will be included
here as a reference.

DROID (Digital Record Object Identification) is a software tool developed by The National
Archives to perform automated batch identification of file formats. It is one of a planned
series of tools utilising PRONOM to provide specific digital preservation services. DROID
uses internal (byte sequence) and external (file extension) signatures to identify and report
the specific file format versions of digital files. These signatures are stored in an XML
signature file, generated from information recorded in the PRONOM technical registry.

7.4.2 UDFR

As of this writing, UDFR is still in the conceptual stage, and as such does not have a public
API available yet.

7.5 Characterisation

7.5.1 FITS

The Core uses the open-source FITS tool. FITS in turn uses the following open source tools:

• Jhove19

18

 http://gforge.planets-project.eu/gf/project/pronom/scmsvn/?action=browse&view=rev&revision=5

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 37/72

• Exiftool20

• National Library of New Zealand Metadata Extractor21

• DROID22

• FFIdent23

• File Utility24

FITS also supplies two original tools

• FileInfo

• XmlMetadata

The FITS version used in the EF has been slightly modified: to enhance identification of
(game) files, a modified DROID signature file including several formats was developed. This
modified file only relies on the file extension for identification, and not on any other
characteristics.

The following files reflect these changes:

• fits-0.4.1/xml/fits.xml

• modified DROID signature file reference

• fits-0.4.1/xml/fits_xml_map.xml

• map JHove file-type identifications ‘HTML’, ‘HTML Strict’ and ‘XHTML’ to
‘Hypertext Markup Language’

• fits-0.4.1/tools/droid/DROID_SignatureFile_V35_KEEP.xml

• added ‘d64’ file extension as Commodore C64 Disk Image

• added ‘t64’ file extension as Commodore C64 Tape Image

• added ‘adf’ file extension as Amiga Disk Image

• added ‘dsk’ and ‘sna’ as Amstrad Disk Image

• added ‘cdt’ as Amstrad Tape Image

• added ‘k7’ file extension as Thomson Tape Image

• added ‘m7’ file extension as Thomson Cartridge Image

• added ‘d7’ and ‘dd7’ file extensions as Thomson Floppy Image

• added ‘ipf’ file extension as Interchangeable Preservation Format

• added ‘mbx’ and ‘mbox’ file extensions as Eudora Mailbox File

19

 http://hul.harvard.edu/jhove/

20
 http://www.sno.phy.queensu.ca/~phil/exiftool/

21
 http://meta-extractor.sourceforge.net/

22
 http://droid.sourceforge.net/

23
 http://schmidt.devlib.org/ffident/index.html

24
 http://unixhelp.ed.ac.uk/CGI/man-cgi?file

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 38/72

8 Core API

As referenced in section 4.1.1, the Core should provide an API for communication. The user
requirements state that the API should contain at least the following:

• a (web) service that takes a binary file and an XML metadata file as inputs and
returns an acknowledgment on successful acceptance.

• a (web) service that takes a binary set of files and an XML metadata file as inputs and
returns an acknowledgment on successful acceptance.

For user interaction, the Core will need to be controlled by a GUI. This will require some
more specific methods than those mentioned above, and for those cases a more extensive
API has been defined. However, as possible GUI interactions may include the methods
above, both the machine and GUI API have been combined into one interface. This interface
is fully specified in Appendix C: Core API

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 39/72

9 System-Wide Features

9.1.1 Language

As the Core EF is a back-end system, it is not intended to have a lot of language specific
items in it. However, error messages from the Core may be passed to external systems. The
descriptions of errors, as well as any system logging, will be in English.

The comprehensive GUI that is delivered as an integral part of the Core EF offers multi-
language functionality. It currently supports English, French and Dutch. The user can choose
between these options, and all labels, GUI messages, buttons, menus, etc., will use the
chosen language. The default language for the GUI is English. Note that error messages
originating from the Core EF will by default be in English, irrespective of the GUI language.

The basic GUI for the EF does not currently support multiple languages. The current version
offers an English interface only.

The EF also includes Observer functionality, modelled on the Observer design pattern to
update observers of progress. Again these messages will be in English.

9.1.2 Error-Handling

Any errors will be passed back to the external system for further handling and possible
display.

9.1.3 Automated Debugging, Testing and Diagnostics

The major methods of classes will have their own automatic self-checking tests using the
jUnit framework to enable frequent, extensive unit tests to be run throughout development.
Each library will have a test harness user interface to enable it to be executed in isolation.

9.1.4 Speed and Capacity

As emulation can be very CPU-intensive, high-end hardware and optimisation of code can
lead to better results. The EF is not concerned with these issues, however, as the emulators
themselves are not part of the code to be developed and thus beyond the scope of this
document.

Also, the EF is intended to run on a virtualised layer. Optimisations in this layer or during
compilation of the EF for this layer will have far greater effect than optimising the EF code.
Again, this virtual layer is beyond the scope of this document, so no special precautions will
have to be made within the EF.

Connections to external systems will have time-out values associated with them to ensure
the system returns within a specified time.

9.1.5 Statutory and Regulatory

The KEEP consortium is not aware of any Regulatory and Statutory requirements relating to
this project. Legal studies regarding emulation have been carried out as part of the KEEP
project and the design of the EF will adhere to these results. However, the EF is only a
harness for running emulators and no specific investigation has been carried out to confirm
the legality of it.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 40/72

10 Development Environment

10.1 Development language

The choice of development language is limited to Java or C/C++ [DoW]. Both are object-
oriented libraries, and the difficult parts of the project seem equally difficult in both
languages: controlling video/audio output of separate processes (external executables)
seems to be very difficult, if not impossible for any of today’s language/technology.

It is expected that C/C++ is easier to compile with a KEEP VM modified GCC. This would
allow running the Core on a virtualisation layer at an earlier stage. C/C++ is a much lower
level language than Java, however, and this means due to higher overheads it will require
more effort to produce a full framework.

Although it is expected that porting Java to the KEEP VM is a more difficult task, this is one
of the expected outcomes of the KEEP project [DoW]. Although it was noted that GCC is not
yet entirely compatible with Java's graphic libraries (Swing/AWT), it is expected that a
complete operating system such as Linux will be ported to the KEEP VM in the future, and
this will have full support for Java. As such, a framework written in Java is also expected to
run on the KEEP VM.

Moreover, Java has far more libraries available for web services, database access,
characterisation, XML generation, etc. This low overhead means that it is far quicker to
produce a framework with high functionality compared to C/C++. Coupled with the fact that
the development team already had significant experience in Java, this would allow for far
quicker development of the Core, delivering a rich framework at the end of development.

When the choice needed to be made, it was known that the KEEP VM would not support a
full-fledged framework. The decision was then made that rather than limiting the framework’s
functionality so it could run on the KEEP VM in the short term, a full-fledged framework would
be built that would not run on the KEEP VM until much later in the project.

Prior to being ported to the KEEP VM, Java has the added advantage that due to its high
portability it can easily run on multiple platforms; compared to this, porting C/C++ is an
intensive and tedious process. This allows demonstrations and dissemination of the EF on
many platforms before the KEEP project is complete.

Given the above considerations, Java was chosen as the development language.

10.2 Internal database

The choice for internal database to be used within Java can be one of many simple
databases such as H225, HSQL26, Derby27, or Firebird28. As complete emulator executables
may be stored inside this database, it is important it has a good performance with large
amounts of binary data, such as BLOBs.

Given its small footprint and integrated web-based database viewer, H2 was selected as
internal database.

25

 http://www.h2database.com/html/main.html

26
 http://hsqldb.org/

27
 http://db.apache.org/derby/

28
 http://www.firebirdsql.org/

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 41/72

Nonetheless, a database abstraction layer should be developed that translates the
development language calls to SQL; this should ensure that the code is independent of the
choice of internal database, allowing for easy replacement if for any reason a particular
database is preferred.

10.3 Choice of emulators

The requirements for the EF specify that it should be able to run at least two types of
emulators, of which one is a Java-based emulator, and another is a KEEP VM based
emulator.

Two emulators were chosen to fulfill these requirements: Dioscuri29 and VICE30.

Dioscuri was chosen as the team possessed extensive knowledge of the emulator. As it was
expected that changes to the emulator may be needed to fully integrate it with the EF, this
knowledge could prove invaluable. Furthermore, Dioscuri is written in Java, fulfilling the
requirement to support Java-based emulator. It emulates the x86 platform, currently the most
widely-used computer platform.

VICE was chosen to fulfill the remaining requirement to support a different type of emulator.
VICE emulates the Commodore’s 8-bit family of computers. From a usage perspective, the
Commodore is widely supported in the emulation community, as well as being a platform for
which very accurate emulators have been written. VICE is open source, so changes can be
made to integrate it with the EF if necessary; furthermore it is written in C/C++, which makes
it straightforward to (cross) compile, making it available for many platforms which may ease
the porting to KEEP VM.

Support for several other emulators has been added: Qemu (x86), UAE (Amiga), BeebEm
(BBC Micro), JavaCPC (Amstrad CPC), Thomson Emulator (Thomson).

10.4 Emulator configuration

Currently, to configure the emulators included in the EF, a separate emulator configuration is
included in the (certified) emulator package for each emulator. This highly intensive task is
not durable: it requires constant updates to the configuration when the emulator is modified.
This method only works for configuration options already available in the emulators; although
for open source emulators the source code can be modified, this will not work for closed
source emulators.

To solve the problem of individual emulator configuration, a future solution would be to
suggest that emulators included in the EF support a configuration API, i.e. each emulator
implements a specified API that would allow the framework to call the methods in the API to
control the emulator. This way, emulator developers have more control over the
configuration, and the EF can rely on a generic API to control every emulator.

As configuration complexity differs between emulators, it is suggested that the configuration
API is broken down into three levels of complexity: at the lowest, simplest level, only the very
basic configuration parameters, such as mounting of disk and BIOS images, starting and
stopping the emulator, are supported. Higher levels include all parameters of lower levels,
and adding configuration of peripherals such as mouse/keyboard. At the highest complexity
level, all the lower level parameters are supported, as well as video/chip timings, screen

29

 http://dioscuri.sourceforge.net/

30
 http://www.viceteam.org/

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 42/72

settings, etc. This hierarchy is displayed in Figure 8, which is a suggested configuration
design using XML files and Java interfaces.

Figure 8: Emulator configuration design

This hierarchy of configuration would allow emulator developers to choose which level they
can or want to implement, and so would allow the EF even for the simplest configuration to
control the emulators.

As the EF and every emulator is expected to run on the KEEP VM in the future, the VM will
act as an intermediary between the emulators and the EF, as the user will control the EF.
The EF passes the required calls to the VM, which in turn will pass them on to the running
emulator. In this respect, the API described above will be implemented between the VM and
the EF as well as between the VM and the emulators.

10.5 Process control
The requirements state that the Emulation Framework should have control over any emulator
it starts. However, early in the project it was discovered that controlling these emulators
turned out to be a far more difficult task than first assumed. Several levels of complexity can
be realized to control the emulators, ranging from difficult to implement but retaining a high
level of control, to a simple implementation but relinquishing a lot of control.

• The EF has full control over the process
The EF, similar to an OS, can spawn an emulator as a child process, and retain full
control over it. Similar to an OS, the EF has full access to the input and output of the
process, and thus can redirect the video, audio, etc. This scenario retains most
control, and can therefore do nearly everything with the inputs/outputs of the
emulator. This will also allow the EF to provide a generic control, regardless of
emulator.
However, this is the most complex scenario, and as stated previously, the EF will
have to implement many process control features that are usually only found in full-
fledged operating systems.

• EF controls process via host/KEEP VM
A slightly less complex scenario, that trades of some control for simplicity, is that the
EF asks the underlying host (this can be a common OS such as Windows/Linux, but
also the KEEP VM) to spawn the emulator as a separate process. The EF then relies

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 43/72

on the host to control the process for it, e.g. the EF will request the host to perform
certain features such as stopping, maximizing, minimizing, etc., the process. The EF
is reliant on the host to perform these actions, and unless special privileges are given
to the EF, the list of actions is likely to be fairly limited. Hence a certain amount of
control is lost; it is unlikely the EF can ask the host access to the input/output streams
of the separate emulator process

• EF communicates with process via a standard protocol (e.g. network sockets)
The least complex (from an EF point of view) of the three scenarios, but also likely to
retain the least control over the emulator. The EF spawns the emulator as a separate
process on the host, and maintains a direct link to the emulator via a standard
protocol such as network (Berkely/Java sockets), or TCP/IP. This does mean that
only emulators that support this protocol can be controlled, and even then the
expected amount of control is assumed to be limited, e.g. simple input and output
data can be expected (e.g. keystrokes in and screenshots out), but more complex
data such as sound or video out is likely to be too data intensive for any such
protocol.
This scenario is technically speaking the least complex but also allows little control,
and is quite demanding on the modifications required by an emulator for it to be able
to be controlled.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 44/72

Glossary

Architectural Design Document

The high-level design document for the entire system (this document)

Atomic Digital Object

 A digital object consisting of a single file

Compound Digital Object

A digital object consisting of a container format (such as ISO or ZIP), containing a
collection of compound or atomic digital objects

Core

The part of the framework not including the GUI, nor the emulators that run in it, nor
the transfer tools or the virtual layer on which it will run. These are all separate
systems within the Emulation Framework. This document outlines the design of the
Core.

Digital Object

An object composed of a set of bit sequences, e.g. a single document such as a PDF
file, or an image of a (console) game, etc.

Emulation Framework

A framework that offers emulation services for digital preservation. Its main
functionality is to allow a user to load a digital object and select one of a number of
pathways in the framework to render the digital object in its original environment.

Metadata

Data about other data; more specifically, data describing properties of the digital
object

Pathway

A structured description of the complete hardware and software stack needed to
render a digital object. This usually consists of four layers (digital object, rendering
application, OS, hardware platform), but may have more or less, e.g. some console
game only have two: digital object and hardware platform

The terms pathway and viewpath can be considered to be used interchangeably

Software package

The software layers of the pathway, i.e. the rendering application and operating
system

Preservation Fidelity factor

 A user-generated indicator of how well a pathway supports the selected digital object

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 45/72

Appendix A: Emulator Archive WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions name="EmulatorArchive"

 targetNamespace="http://emulatorarchive.keep.eu"

 xmlns:tns="http://emulatorarchive.keep.eu"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <!-- type/schema definition -->

 <wsdl:types>

 <xs:schema xmlns:tns="http://emulatorarchive.keep.eu"

 targetNamespace="http://emulatorarchive.keep.eu"

 xmlns:ea="http://emulatorarchive.keep.eu/EmulatorPackage"

 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

 <xs:import namespace="http://emulatorarchive.keep.eu/EmulatorPackage"

 schemaLocation="EmulatorPackageSchema.xsd"/>

 <xs:element name="emuPackage" type="ea:emulatorPackage"/>

 <xs:element name="emulatorPackageList">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="emulatorPackage"

type="ea:emulatorPackage" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="hardwareID" type="xs:string"/>

 <xs:element name="hardwareIDs">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="id" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="emulatorID_1" type="xs:int"/>

 <xs:element name="emulatorID_2" type="xs:int"/>

 <xs:element name="packageFile" type="xs:base64Binary"

 xmime:expectedContentTypes="application/octet-stream"/>

 <xs:element name="emuLanguage_list" type="ea:emuLanguage_list"/>

 <!--

 Dummy element used for notification operations

(http://www.w3.org/TR/wsdl#_notification)

 Apparently not supported by CXF (?)

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 46/72

 -->

 <xs:element name="dummyElement" type="xs:int"/>

 <!--

 The same element/message cannot be used for several operations

 Workaround: define multiple elements for each usage.

 See forum discussion here: http://old.nabble.com/%22Non-unique-body-

parts%22-error-when-trying-to-use-same-input-message-for-2-different-

operations-ts28387764.html

 -->

 <xs:element name="dummyElement_2" type="xs:int"/>

 <xs:element name="dummyElement_3" type="xs:int"/>

 </xs:schema>

 </wsdl:types>

 <!-- message definition -->

 <wsdl:message name="PingInput">

 <wsdl:part name="dummy" type="xs:int"/>

 </wsdl:message>

 <wsdl:message name="PingOutput">

 <wsdl:part name="response" type="xs:boolean"/>

 </wsdl:message>

 <wsdl:message name="GetEmulatorPackageInput">

 <wsdl:part name="parameters" element="tns:emulatorID_1"/>

 </wsdl:message>

 <wsdl:message name="GetEmulatorPackageOutput">

 <wsdl:part name="emulatorPackage" element="tns:emuPackage"/>

 </wsdl:message>

 <wsdl:message name="GetEmulatorPackageListInput">

 <wsdl:part name="parameters" element="tns:dummyElement"/>

 </wsdl:message>

 <wsdl:message name="GetEmulatorPackageListOutput">

 <wsdl:part name="emulatorPackageList" element="tns:emulatorPackageList"/>

 </wsdl:message>

 <wsdl:message name="DownloadEmulatorInput">

 <wsdl:part name="parameters" element="tns:emulatorID_2"/>

 </wsdl:message>

 <wsdl:message name="DownloadEmulatorOutput">

 <wsdl:part name="parameters" element="tns:packageFile"/>

 </wsdl:message>

 <wsdl:message name="GetSupportedHardwareInput">

 <wsdl:part name="parameters" element="tns:dummyElement_2"/>

 </wsdl:message>

 <wsdl:message name="GetSupportedHardwareOutput">

 <wsdl:part name="parameters" element="tns:hardwareIDs"/>

 </wsdl:message>

 <wsdl:message name="GetEmusByHardwareInput">

 <wsdl:part name="parameters" element="tns:hardwareID"/>

 </wsdl:message>

 <wsdl:message name="GetEmusByHardwareOutput">

 <wsdl:part name="parameters" element="tns:emulatorPackageList"/>

 </wsdl:message>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 47/72

 <wsdl:message name="GetLanguageListInput">

 <wsdl:part name="parameters" element="tns:dummyElement_3"/>

 </wsdl:message>

 <wsdl:message name="GetLanguageListOutput">

 <wsdl:part name="parameters" element="tns:emuLanguage_list"/>

 </wsdl:message>

 <!-- portType definition -->

 <wsdl:portType name="EmulatorArchivePortType">

 <wsdl:operation name="Ping">

 <wsdl:input message="tns:PingInput"/>

 <wsdl:output message="tns:PingOutput"/>

 </wsdl:operation>

 <wsdl:operation name="DownloadEmulator">

 <wsdl:input message="tns:DownloadEmulatorInput"/>

 <wsdl:output message="tns:DownloadEmulatorOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetEmulatorPackage">

 <wsdl:input message="tns:GetEmulatorPackageInput"/>

 <wsdl:output message="tns:GetEmulatorPackageOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetEmulatorPackageList">

 <wsdl:input message="tns:GetEmulatorPackageListInput"/>

 <wsdl:output message="tns:GetEmulatorPackageListOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetSupportedHardware">

 <wsdl:input message="tns:GetSupportedHardwareInput"/>

 <wsdl:output message="tns:GetSupportedHardwareOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetEmusByHardware">

 <wsdl:input message="tns:GetEmusByHardwareInput"/>

 <wsdl:output message="tns:GetEmusByHardwareOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetLanguageList">

 <wsdl:input message="tns:GetLanguageListInput"/>

 <wsdl:output message="tns:GetLanguageListOutput"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- binding definition -->

 <wsdl:binding name="EmulatorArchiveBinding"

type="tns:EmulatorArchivePortType">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Ping">

 <soap:operation soapAction="http://softwarearchive.keep.eu/Ping"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 48/72

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="DownloadEmulator">

 <soap:operation

soapAction="http://emulatorarchive.keep.eu/DownloadEmulator"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetEmulatorPackage">

 <soap:operation

soapAction="http://emulatorarchive.keep.eu/GetEmulatorPackage"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetEmulatorPackageList">

 <soap:operation

 soapAction="http://emulatorarchive.keep.eu/GetEmulatorPackageList"

 style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetSupportedHardware">

 <soap:operation

 soapAction="http://emulatorarchive.keep.eu/GetSupportedHardware"

 style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetEmusByHardware">

 <soap:operation

soapAction="http://emulatorarchive.keep.eu/GetEmusByHardware" \

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 49/72

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetLanguageList">

 <soap:operation

soapAction="http://softwarearchive.keep.eu/GetLanguageList"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <!-- service definition -->

 <wsdl:service name="EmulatorArchiveService">

 <wsdl:port name="EmulatorArchivePort"

binding="tns:EmulatorArchiveBinding">

 <soap:address location="http://localhost:9001/emulatorarchive/"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 50/72

Appendix B: Software Archive WSDL

<?xml version="1.0" encoding="utf-8"?>

<wsdl:definitions name="SoftwareArchive"

 targetNamespace="http://softwarearchive.keep.eu"

 xmlns:tns="http://softwarearchive.keep.eu"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:pw="http://softwarearchive.keep.eu/Pathway">

 <!-- type/schema definition -->

 <wsdl:types>

 <xs:schema xmlns:tns="http://softwarearchive.keep.eu"

 targetNamespace="http://softwarearchive.keep.eu"

 xmlns:swa="http://softwarearchive.keep.eu/SoftwarePackage"

 xmlns:pw="http://softwarearchive.keep.eu/Pathway"

 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

 <xs:import namespace="http://softwarearchive.keep.eu/SoftwarePackage"

 schemaLocation="SoftwarePackageSchema.xsd"/>

 <xs:import namespace="http://softwarearchive.keep.eu/Pathway"

 schemaLocation="PathwaySchema.xsd"/>

<xs:element name="softwarePackage" type="swa:softwarePackage"/>

 <xs:element name="softwarePackageList">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="softwarePackage"

type="swa:softwarePackage" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="pathwayList">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="pw:pathway" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="fileFormatList">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="fileFormat" type="pw:objectFormatType"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 51/72

 <xs:element name="swLanguageList">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="languageIds" type="xs:string"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <!--

 The same element/message cannot be used for several operations

 Workaround: define multiple elements for each usage.

 See forum discussion here: http://old.nabble.com/%22Non-unique-body-

parts%22-error-when-trying-to-use-same-input-message-for-2-different-

operations-ts28387764.html

 -->

 <xs:element name="softwareID_1" type="xs:string"/>

 <xs:element name="softwareID_2" type="xs:string"/>

 <xs:element name="softwareFile" type="xs:base64Binary"

 xmime:expectedContentTypes="application/octet-stream"/>

 <xs:element name="fileFormat" type="xs:string"/>

 <xs:complexType name="registryList">

 <xs:sequence>

 <xs:element name="registries" type="pw:registryType"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="EFFormatData">

 <xs:sequence>

 <xs:element name="efFormat" type="pw:efFormat"

minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!--

 Dummy element used for notification operations

(http://www.w3.org/TR/wsdl#_notification)

 Apparently not supported by CXF (?)

 -->

 <xs:element name="dummyElement_1" type="xs:string"/>

 <xs:element name="dummyElement_2" type="xs:string"/>

 </xs:schema>

 </wsdl:types>

 <!-- message definitions -->

 <wsdl:message name="PingInput">

 <wsdl:part name="dummy" type="xs:int"/>

 </wsdl:message>

 <wsdl:message name="PingOutput">

 <wsdl:part name="response" type="xs:boolean"/>

 </wsdl:message>

 <wsdl:message name="GetSoftwarePackageInfoInput">

 <wsdl:part name="parameters" element="tns:softwareID_1"/>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 52/72

 </wsdl:message>

 <wsdl:message name="GetSoftwarePackageInfoOutput">

 <wsdl:part name="emulatorPackage" element="tns:softwarePackage"/>

 </wsdl:message>

 <wsdl:message name="GetAllSoftwarePackagesInfoInput">

 <wsdl:part name="parameters" element="tns:dummyElement_1"/>

 </wsdl:message>

 <wsdl:message name="GetAllSoftwarePackagesInfoOutput">

 <wsdl:part name="softwarePackageList" element="tns:softwarePackageList"/>

 </wsdl:message>

 <wsdl:message name="GetPathwaysByFileFormatInput">

 <wsdl:part name="parameters1" element="tns:fileFormat"/>

 </wsdl:message>

 <wsdl:message name="GetPathwaysByFileFormatOutput">

 <wsdl:part name="parameters" element="tns:pathwayList"/>

 </wsdl:message>

 <wsdl:message name="GetAllPathwaysInput">

 </wsdl:message>

 <wsdl:message name="GetAllPathwaysOutput">

 <wsdl:part name="parameters" element="tns:pathwayList"/>

 </wsdl:message>

 <wsdl:message name="GetAllFileFormatsInput">

 </wsdl:message>

 <wsdl:message name="GetAllFileFormatsOutput">

 <wsdl:part name="parameters" element="tns:fileFormatList"/>

 </wsdl:message>

 <wsdl:message name="GetSoftwarePackagesByPathwayInput">

 <wsdl:part name="parameters1" element="pw:pathway"/>

 </wsdl:message>

 <wsdl:message name="GetSoftwarePackagesByPathwayOutput">

 <wsdl:part name="parameters" element="tns:softwarePackageList"/>

 </wsdl:message>

 <wsdl:message name="DownloadSoftwareInput">

 <wsdl:part name="parameters" element="tns:softwareID_2"/>

 </wsdl:message>

 <wsdl:message name="DownloadSoftwareOutput">

 <wsdl:part name="parameters" element="tns:softwareFile"/>

 </wsdl:message>

 <wsdl:message name="GetLanguageListInput">

 <wsdl:part name="parameters" element="tns:dummyElement_2"/>

 </wsdl:message>

 <wsdl:message name="GetLanguageListOutput">

 <wsdl:part name="parameters" element="tns:swLanguageList"/>

 </wsdl:message>

 <wsdl:message name="GetRegistriesInput">

 <wsdl:part name="dummy" type="xs:int"/>

 </wsdl:message>

 <wsdl:message name="GetRegistriesOutput">

 <wsdl:part name="registries" type="tns:registryList"/>

 </wsdl:message>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 53/72

 <wsdl:message name="UpdateRegistriesInput">

 <wsdl:part name="registries" type="tns:registryList"/>

 </wsdl:message>

 <wsdl:message name="UpdateRegistriesOutput">

 <wsdl:part name="succes" type="xs:boolean"/>

 </wsdl:message>

 <wsdl:message name="SetRegistriesInput">

 <wsdl:part name="registries" type="tns:registryList"/>

 </wsdl:message>

 <wsdl:message name="SetRegistriesOutput">

 <wsdl:part name="succes" type="xs:boolean"/>

 </wsdl:message>

 <wsdl:message name="GetFormatDataOnIdInput">

 <wsdl:part name="pcrFormatId" type="xs:string"/>

 <wsdl:part name="viewName" type="xs:string"/>

 </wsdl:message>

 <wsdl:message name="GetFormatDataOnIdOutput">

 <wsdl:part name="efFormatData" type="tns:EFFormatData"/>

 </wsdl:message>

 <!-- portType definition -->

 <wsdl:portType name="SoftwareArchivePortType">

 <wsdl:operation name="Ping">

 <wsdl:input message="tns:PingInput"/>

 <wsdl:output message="tns:PingOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetSoftwarePackageInfo">

 <wsdl:input message="tns:GetSoftwarePackageInfoInput"/>

 <wsdl:output message="tns:GetSoftwarePackageInfoOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetAllSoftwarePackagesInfo">

 <wsdl:input message="tns:GetAllSoftwarePackagesInfoInput"/>

 <wsdl:output message="tns:GetAllSoftwarePackagesInfoOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetPathwaysByFileFormat">

 <wsdl:input message="tns:GetPathwaysByFileFormatInput"/>

 <wsdl:output message="tns:GetPathwaysByFileFormatOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetAllPathways">

 <wsdl:input message="tns:GetAllPathwaysInput"/>

 <wsdl:output message="tns:GetAllPathwaysOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetAllFileFormats">

 <wsdl:input message="tns:GetAllFileFormatsInput"/>

 <wsdl:output message="tns:GetAllFileFormatsOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetSoftwarePackagesByPathway">

 <wsdl:input message="tns:GetSoftwarePackagesByPathwayInput"/>

 <wsdl:output message="tns:GetSoftwarePackagesByPathwayOutput"/>

 </wsdl:operation>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 54/72

 <wsdl:operation name="DownloadSoftware">

 <wsdl:input message="tns:DownloadSoftwareInput"/>

 <wsdl:output message="tns:DownloadSoftwareOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetLanguageList">

 <wsdl:input message="tns:GetLanguageListInput"/>

 <wsdl:output message="tns:GetLanguageListOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetRegistries">

 <wsdl:input message="tns:GetRegistriesInput"/>

 <wsdl:output message="tns:GetRegistriesOutput"/>

 </wsdl:operation>

 <wsdl:operation name="UpdateRegistries">

 <wsdl:input message="tns:UpdateRegistriesInput"/>

 <wsdl:output message="tns:UpdateRegistriesOutput"/>

 </wsdl:operation>

 <wsdl:operation name="SetRegistries">

 <wsdl:input message="tns:SetRegistriesInput"/>

 <wsdl:output message="tns:SetRegistriesOutput"/>

 </wsdl:operation>

 <wsdl:operation name="GetFormatDataOnId">

 <wsdl:input message="tns:GetFormatDataOnIdInput"/>

 <wsdl:output message="tns:GetFormatDataOnIdOutput"/>

 </wsdl:operation>

 </wsdl:portType>

 <!-- binding definition -->

 <wsdl:binding name="SoftwareArchiveBinding"

type="tns:SoftwareArchivePortType">

 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="Ping">

 <soap:operation soapAction="http://softwarearchive.keep.eu/Ping"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetSoftwarePackageInfo">

 <soap:operation

 soapAction="http://softwarearchive.keep.eu/GetSoftwarePackageInfo"

 style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 55/72

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetAllSoftwarePackagesInfo">

 <soap:operation

 soapAction="http://softwarearchive.keep.eu/GetAllSoftwarePackagesInfo"

 style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetPathwaysByFileFormat">

 <soap:operation

 soapAction="http://softwarearchive.keep.eu/GetPathwaysByFileFormat"

 style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetAllPathways">

 <soap:operation

soapAction="http://softwarearchive.keep.eu/GetAllPathways"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetAllFileFormats">

 <soap:operation

soapAction="http://softwarearchive.keep.eu/GetAllFileFormats"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetSoftwarePackagesByPathway">

 <soap:operation

 soapAction="http://softwarearchive.keep.eu/GetSoftwarePackagesByPathway"

 style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 56/72

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="DownloadSoftware">

 <soap:operation

 soapAction="http://softwarearchive.keep.eu/DownloadSoftware"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetLanguageList">

 <soap:operation

soapAction="http://softwarearchive.keep.eu/GetLanguageList"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetRegistries">

 <soap:operation

soapAction="http://softwarearchive.keep.eu/GetRegistries"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="UpdateRegistries">

 <soap:operation

soapAction="http://softwarearchive.keep.eu/UpdateRegistries"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="SetRegistries">

 <soap:operation

soapAction="http://softwarearchive.keep.eu/SetRegistries"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 57/72

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 <wsdl:operation name="GetFormatDataOnId">

 <soap:operation

soapAction="http://softwarearchive.keep.eu/GetFormatDataOnId"

style="document"/>

 <wsdl:input>

 <soap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <!-- service definition -->

 <wsdl:service name="SoftwareArchiveService">

 <wsdl:port name="SoftwareArchivePort"

binding="tns:SoftwareArchiveBinding">

 <soap:address location="http://localhost:9000/softwarearchive/"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 58/72

Appendix C: Core API

Method Summary

 void addAcceptedLanguage(Language language)
 Add a language to filter out Emulators or Software.

 EmulatorPackage autoSelectEmulator(List<EmulatorPackage> emuPacks)
 Select an emulator automatically from a list of emulators The
selection process picks the first encountered emulator that can run on
the current host system

 Format autoSelectFormat(List<Format> formats)
 Select a format from a list of formats.

 Pathway autoSelectPathway(List<Pathway> pathways)
 Select a valid pathway automatically from a list of potential
pathways The selection process simply picks the first encountered
satisfiable pathway

 SoftwarePackage autoSelectSoftwareImage(List<SoftwarePackage> swPacks)
 Select a software image automatically from a list of software
images.

 List<Format> characterise(File digObj)
 Characterise a digital object and returns information on format
names, mime types and the reporting tools.

 void cleanUp()
 Clean up any temporary files and directories that were created
by the Core Engine to unpack files, run emulators, etc.

 Pathway extractPathwayFromFile(File metadataFile)
 Retrieve the technical environment, i.e.

 Set<Language> getAcceptedLanguages()
 Get the set of languages to filter out Emulators or Software.

 List<ObjectFormatType
>

getAllFileFormatsFromArchive()
 Gets all supported file formats from the software archive

 Properties getCoreSettings()
 Get the Core Engine settings

 Map<String,List<Map<S
tring,String>>>

getEmuConfig(Integer conf)
 Get the configuration map of all available emulator parameters
Useful for manual configuration of the emulator, to be used with
setEmuConfig()

 List<Language> getEmulatorLanguages()
 Gets all emulator languages from the emulator archive

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 59/72

 List<EmulatorPackage> getEmulatorsByPathway(Pathway pathway)
 Returns a list of supported emulators that satisfy a given
pathway.

 List<EmulatorPackage> getEmuListFromArchive()
 Get the list of all emulator packages available in the Emulator
Archive

 List<EmulatorPackage> getEmusByHWFromArchive(String hardwareName)
 Get the list of emulator packages that support a hardware type in
the emulator archive

 Map<String,List<Strin
g>>

getFileInfo(File digObj)
 Characterise a digital object and returns file information

 List<Pathway> getPathways(Format format)
 Get pathways for a given file formatName.

 List<DBRegistry> getRegistries()
 Retrieve the list of technical registries

 List<SoftwarePackage> getSoftwareByPathway(Pathway pathway)
 Returns a list of supported software packages that satisfy a given
pathway.

 List<Language> getSoftwareLanguages()
 Gets all software languages from the software archive

 List<SoftwarePackage> getSoftwareListFromArchive()
 Get all software packages available in the software archive

 Set<String> getSupportedHardwareFromArchive()
 Get the list of hardware supported by the Emulator Archive

 Map<String,List<Strin
g>>

getTechMetadata(File digObj)
 Characterise a digital object and returns technical metadata
information

 String getTitle()
 Get the Emulation Framework title from the jar manifest

 String getVendor()
 Get the Emulation Framework vendor from the jar manifest

 String getVersion()
 Get the Emulation Framework version from the jar manifest

 List<EmulatorPackage> getWhitelistedEmus()
 Select the whitelisted emulator IDs from the local database

 boolean isPathwaySatisfiable(Pathway pathway)
 Checks if a given pathway is satisfiable given the available
emulators and software images

 Map<EmulatorPackage,L
ist<SoftwarePackage>>

matchEmulatorWithSoftware(Pathway pathway)
 Match emulators with a list of associated software images from a

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 60/72

given pathway and filter all by language

 Integer prepareConfiguration(File digObj, EmulatorPackage emuPack,
SoftwarePackage swPack, Pathway pathway)
 Prepares the configuration settings for the selected emulation
process The resulting configuration (emulator options) can be edited
using setEmuOptions() and getEmuOptions()

 void registerObserver(CoreObserver coreObs)
 Register an observer

 void removeAcceptedLanguage(Language language)
 Remove a language to filter out Emulators or Software.

 void removeObserver(CoreObserver coreObs)
 Remove an observer

 void runEmulationProcess(Integer conf)
 Run the chosen emulation process An emulator must have
already been selected and its configuration settings properly prepared.

 void setAcceptedLanguages(Set<Language> blockedLanguages)
 Define the set of languages to filter out Emulators or Software.

 void setEmuConfig(Map<String,List<Map<String,String>>> options,
Integer conf)
 Set the emulator parameters Useful for manual configuration of
the emulator to be used with getEmuConfig()

 List<DBRegistry> setRegistries(List<DBRegistry> listReg)
 Insert registry information from list into the local database This
replaces all existing registry information with the contents of the list

 boolean start(File file)
 Launches the emulation process automatically (i.e.

 boolean start(File file, File metadata)
 Launches the emulation process automatically (i.e.

 boolean start(File file, List<Pathway> pathways)
 Launches the emulation process given a digital object and a list
of pathways to select from.

 boolean start(File file, Pathway pathway)
 Launches the emulation process given a digital object and a
specific pathway.

 boolean stop()
 Stop the Core Emulator Framework engine

 boolean unListEmulator(Integer i)
 Removes an emulator ID from the whitelist in the local database
(list of emulators that will be used for rendering a digital object)

 boolean whiteListEmulator(Integer i)
 Adds an emulator ID to the whitelist in the local database (list of
emulators that will be used for rendering a digital object)

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 61/72

Method Detail

getVersion
String getVersion()

Get the Emulation Framework version from the jar manifest

Returns:

String representing the version

getTitle
String getTitle()

Get the Emulation Framework title from the jar manifest

Returns:

String representing the title

getVendor
String getVendor()

Get the Emulation Framework vendor from the jar manifest

Returns:

String representing the vendor

getCoreSettings
Properties getCoreSettings()

Get the Core Engine settings

Returns:

Properties the Java Properties object

registerObserver
void registerObserver(CoreObserver coreObs)

Register an observer

Parameters:

coreObs - A Core Emulation Framework observer

removeObserver
void removeObserver(CoreObserver coreObs)

Remove an observer

Parameters:

coreObs - A Core Emulation Framework observer

getAcceptedLanguages
Set<Language> getAcceptedLanguages()

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 62/72

Get the set of languages to filter out Emulators or Software. Emulators or Software
using any of the languages in this set will not be selected/presented.

Returns:

Set of languages to filter out.

setAcceptedLanguages
void setAcceptedLanguages(Set<Language> blockedLanguages)

Define the set of languages to filter out Emulators or Software. Emulators or Software
using any of the languages in this set will not be selected/presented.

Parameters:

blockedLanguages - Set of languages to filter out.

addAcceptedLanguage
void addAcceptedLanguage(Language language)

Add a language to filter out Emulators or Software. Emulators or Software using this
language will not be selected/presented.

Parameters:

language - the language to filter out.

removeAcceptedLanguage
void removeAcceptedLanguage(Language language)

Remove a language to filter out Emulators or Software. Emulators or Software using
this language will in future be selected/presented again.

Parameters:

language - the language to remove from the filter.

stop
boolean stop()
 throws IOException

Stop the Core Emulator Framework engine

Returns:

True if engine stopped without error, false otherwise

Throws:

IOException

cleanUp
void cleanUp()

Clean up any temporary files and directories that were created by the Core Engine to
unpack files, run emulators, etc.

characterise
List<Format> characterise(File digObj)

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 63/72

 throws IOException

Characterise a digital object and returns information on format names, mime types
and the reporting tools.

Parameters:

digObj - File representing the digital object

Returns:

List list of Format objects

Throws:

IOException - If a FITS characterisation error occurs

See Also:

Format

getTechMetadata
Map<String,List<String>> getTechMetadata(File digObj)
 throws IOException

Characterise a digital object and returns technical metadata information

Parameters:

digObj - File representing the digital object

Returns:

Map> a Map of item names (as keys) and an associated list of values

Throws:

IOException - If a FITS characterisation error occurs

getFileInfo
Map<String,List<String>> getFileInfo(File digObj)
 throws IOException

Characterise a digital object and returns file information

Parameters:

digObj - File representing the digital object

Returns:

Map> a Map of item names (as keys) and an associated list of values

Throws:

IOException - If a FITS characterisation error occurs

getPathways
List<Pathway> getPathways(Format format)
 throws IOException

Get pathways for a given file formatName. This contacts the active technical
registries and returns the pathways (digital object, rendering application, OS,
hardware platform) found for the given formatName. Rendering applications and OSs
will be filtered on the languages that the user has indicated as acceptable.

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 64/72

Parameters:

format - Format of digital object

Returns:

List List of available pathways objects

Throws:

IOException - If a Software Archive connection error occurs

isPathwaySatisfiable
boolean isPathwaySatisfiable(Pathway pathway)
 throws IOException

Checks if a given pathway is satisfiable given the available emulators and software
images

Parameters:

pathway - Pathway Configuration describing the environment

Returns:

true is pathway is satisfiable, false otherwise

Throws:

IOException - If an error occurs while connecting the Emulator/Software Archive

getEmuConfig
Map<String,List<Map<String,String>>> getEmuConfig(Integer conf)
 throws IOException

Get the configuration map of all available emulator parameters Useful for manual
configuration of the emulator, to be used with setEmuConfig()

Parameters:

conf - Integer representing an existing configuration

Returns:

Map<map>> Map of emulator parameters ordered by component and (multiple)
parameter-value pairs

Throws:

IOException - If a template error occurs while configuring the parameters

setEmuConfig
void setEmuConfig(Map<String,List<Map<String,String>>> options,
 Integer conf)
 throws IOException

Set the emulator parameters Useful for manual configuration of the emulator to be
used with getEmuConfig()

Parameters:

options - Map<map>> map of emulator parameters ordered by component and
(multiple) parameter-value pairs

conf - Integer representing an existing configuration

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 65/72

Throws:

IOException - If a template error occurs while configuring the parameters

prepareConfiguration
Integer prepareConfiguration(File digObj,
 EmulatorPackage emuPack,
 SoftwarePackage swPack,
 Pathway pathway)
 throws IOException

Prepares the configuration settings for the selected emulation process The resulting
configuration (emulator options) can be edited using setEmuOptions() and
getEmuOptions()

Parameters:

digObj - File representing the digital object to the passed to the emulator configurator

emuPack - Emulator metadata package

swPack - Software metadata package

pathway - The Pathway that forms the basis for this configuration

Returns:

Integer An identification of a newly generated configuration

Throws:

IOException - If an error occurs while connecting the Emulator/Software Archive

matchEmulatorWithSoftware
Map<EmulatorPackage,List<SoftwarePackage>>
matchEmulatorWithSoftware(Pathway pathway)
 throws
IOException

Match emulators with a list of associated software images from a given pathway and
filter all by language

Parameters:

pathway - Pathway object to analyse

Returns:

Map> A map of emulators with their associated list of compatible software images, all
filtered on the languages that the user has indicated as acceptable.

Throws:

IOException - If an error occurs while connecting the Emulator/Software Archive

autoSelectEmulator
EmulatorPackage autoSelectEmulator(List<EmulatorPackage> emuPacks)
 throws IOException

Select an emulator automatically from a list of emulators The selection process picks
the first encountered emulator that can run on the current host system

Parameters:

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 66/72

emuPacks - list of emulator packages

Returns:

EmulatorPackage The selected emulator package

Throws:

IOException - If an error occurs while connecting the Emulator Archive

autoSelectSoftwareImage
SoftwarePackage autoSelectSoftwareImage(List<SoftwarePackage> swPacks)
 throws IOException

Select a software image automatically from a list of software images. The selection
process picks the first encountered software image from the list

Parameters:

swPacks - list of software packages

Returns:

SoftwarePackage The selected software package

Throws:

IOException - If an error occurs while connecting the Software Archive

autoSelectPathway
Pathway autoSelectPathway(List<Pathway> pathways)
 throws IOException

Select a valid pathway automatically from a list of potential pathways The selection
process simply picks the first encountered satisfiable pathway

Parameters:

pathways - List List of pathway objects

Returns:

selected Pathway object

Throws:

IOException - If an error occurs while analysing the given Pathways

autoSelectFormat
Format autoSelectFormat(List<Format> formats)
 throws IOException

Select a format from a list of formats. This will simply pick the first format of the list
which should correspond to the format identified by the highest number of tools within
FITS

Parameters:

formats - list of file Format objects

Returns:

selected Format object

Throws:

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 67/72

IOException - If a Format exception occurs

See Also:

Format

runEmulationProcess
void runEmulationProcess(Integer conf)
 throws IOException

Run the chosen emulation process An emulator must have already been selected
and its configuration settings properly prepared.

Parameters:

conf - Integer representing an existing configuration

Throws:

IOException - If the configuration environment is not set up properly

extractPathwayFromFile
Pathway extractPathwayFromFile(File metadataFile)
 throws IOException

Retrieve the technical environment, i.e. pathway from a metadata file (xml file) which
must validate the xsd schema PathwaySchema.xsd.

Parameters:

metadataFile - File describing the pathway required to render a the digital object

Returns:

Pathway The pathway described by the XML file

Throws:

IOException - If a validation error occurs

start
boolean start(File file)
 throws IOException

Launches the emulation process automatically (i.e. no human intervention) given a
digital object only. This method will characterise the given digital object, retrieve a list
of pathways from the identified format and then call start(File file,

List<Pathway> pathways).

Parameters:

file - File representing the digital object to be rendered via emulation

Returns:

True if emulation process is launched without error, false otherwise

Throws:

IOException - If a characterisation error occurs

start
boolean start(File file,

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 68/72

 File metadata)
 throws IOException

Launches the emulation process automatically (i.e. no human intervention) given a
digital object and its metadata which should contain all the necessary information to
prepare/configure the emulation environment. This method will extract a the Pathway
from the metadata using and then launch start(File file, Pathway pw). If no
emulation pathway is defined in the metadata file, then the automatic emulation
process is launched by calling start(File file)

Parameters:

file - File representing the digital object to be rendered via emulation

metadata - File representing the pathway required to render the digital object

Returns:

True if emulation process is launched without error, false otherwise

Throws:

IOException - If a validation error occurs

start
boolean start(File file,
 List<Pathway> pathways)
 throws IOException

Launches the emulation process given a digital object and a list of pathways to select
from. A suitable pathway is then selected using an automatic selection method before
calling start(File file, Pathway pathway).

Parameters:

file - File representing the digital object to be rendered via emulation

pathways - List of pathways

Returns:

True if emulation process is launched without error, false otherwise

Throws:

IOException - If a pathway error occurs

start
boolean start(File file,
 Pathway pathway)
 throws IOException

Launches the emulation process given a digital object and a specific pathway.
Returns false if the given pathway is not satisfiable (emulator/software not
supported/available).

Parameters:

file - File representing the digital object to be rendered via emulation

pathway - Pathway describing the environment required to render the digital object

Returns:

True if emulation process is launched without error, false otherwise

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 69/72

Throws:

IOException - If a pathway error occurs, or the emulation process cannot be
launched successfully

getEmuListFromArchive
List<EmulatorPackage> getEmuListFromArchive()
 throws IOException

Get the list of all emulator packages available in the Emulator Archive

Returns:

List the list of all emulator packages

Throws:

IOException - If an Emulator Archive connection error occurs

getSupportedHardwareFromArchive
Set<String> getSupportedHardwareFromArchive()
 throws IOException

Get the list of hardware supported by the Emulator Archive

Returns:

Set Hardware names supported by the emulator archive

Throws:

IOException - If an Emulator Archive connection error occurs

getEmusByHWFromArchive
List<EmulatorPackage> getEmusByHWFromArchive(String hardwareName)
 throws IOException

Get the list of emulator packages that support a hardware type in the emulator
archive

Parameters:

hardwareName - String describing the hardware type

Returns:

List Emulators that support the hardware type

Throws:

IOException - If an Emulator Archive connection error occurs

getEmulatorsByPathway
List<EmulatorPackage> getEmulatorsByPathway(Pathway pathway)
 throws IOException

Returns a list of supported emulators that satisfy a given pathway. Retrieves a list of
emulators packages that satisfy (the hardware part) of the pathway

Parameters:

pathway - Pathway object describing the environment required to render a digital
object

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 70/72

Returns:

list of emulator metadata packages

Throws:

IOException - If an Emulator Archive connection error occurs

getWhitelistedEmus
List<EmulatorPackage> getWhitelistedEmus()
 throws IOException

Select the whitelisted emulator IDs from the local database

Returns:

List a list of emulator metadata packages

Throws:

IOException - If an database connection error occurs

whiteListEmulator
boolean whiteListEmulator(Integer i)
 throws IOException

Adds an emulator ID to the whitelist in the local database (list of emulators that will be
used for rendering a digital object)

Parameters:

i - Unique ID of emulator

Returns:

True if ID successfully added to whitelist, false otherwise

Throws:

IOException - If an database connection error occurs

unListEmulator
boolean unListEmulator(Integer i)
 throws IOException

Removes an emulator ID from the whitelist in the local database (list of emulators that
will be used for rendering a digital object)

Parameters:

i - Unique ID of emulator

Returns:

True if ID successfully removed from whitelist, false otherwise

Throws:

IOException - If a database connection error occurs

getEmulatorLanguages
List<Language> getEmulatorLanguages()
 throws IOException

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 71/72

Gets all emulator languages from the emulator archive

Returns:

List of all languages used by emulators

Throws:

IOException - If a database connection error occurs

getSoftwareByPathway
List<SoftwarePackage> getSoftwareByPathway(Pathway pathway)
 throws IOException

Returns a list of supported software packages that satisfy a given pathway. Retrieves
a list of software metadat packages from the software database that satisfy (the
operating system and application part) of the pathway

Parameters:

pathway - Pathway object

Returns:

list of software packages

Throws:

IOException - If an Software Archive connection error occurs

getSoftwareListFromArchive
List<SoftwarePackage> getSoftwareListFromArchive()
 throws IOException

Get all software packages available in the software archive

Returns:

List the list of software packages in the archive

Throws:

IOException - If an Software Archive connection error occurs

getSoftwareLanguages
List<Language> getSoftwareLanguages()
 throws IOException

Gets all software languages from the software archive

Returns:

List of all languages used by software

Throws:

IOException - If a database connection error occurs

getAllFileFormatsFromArchive
List<ObjectFormatType> getAllFileFormatsFromArchive()
 throws IOException

Gets all supported file formats from the software archive

Emulation Framework – Architectural Design Document

Version 1.0 (May 2011)

 72/72

Returns:

List list of ObjectFormatType objects representing all file formats currently supported
by the Software Archive

Throws:

IOException - If an Software Archive connection error occurs

getRegistries
List<DBRegistry> getRegistries()
 throws IOException

Retrieve the list of technical registries

Returns:

List The list of technical registries in the local database

Throws:

IOException - If a database connection error occurs

setRegistries
List<DBRegistry> setRegistries(List<DBRegistry> listReg)
 throws IOException

Insert registry information from list into the local database This replaces all existing
registry information with the contents of the list

Parameters:

listReg - List of Registry

Throws:

IOException - If a database connection error occurs

