

Keeping Emulation Environments Portable

FP7-ICT-231954

How to
Add emulators to the Emulation Framework

Date February 28th, 2012

Document version

1.0

Author(s)

Bram Lohman

Organisation(s) Tessella, plc.

How to: add emulators to the Emulation Framework

Executive Summary

This document contains guidelines for emulator developers on how to develop their
emulators for easy integration within the Emulation Framework.

The Emulation Framework (EF) uses an Emulator Archive containing executables of
emulators that are used for rendering the hardware requirements of a selected computer
environment. These emulators are developed independently of the EF by third parties,
mainly from the open source community. For the EF to be able to run an emulator, it has to
be added to the Emulator Archive, a configuration file must be added so it can be set up
correctly, and the EF must be informed of the addition.

This document addresses this process, and outlines how emulator developers can help to
streamline this and what to do to integrate their emulator easily into the EF.

A description of the Emulator Archive database schema is given, describing all tables and
contents of the Emulator Archive, showing what information needs to be filled in when adding
an emulator.

To include an emulator into the EF Emulator Archive, the following should be taken into
account:

1. The packaged emulator must be self-contained, meaning that the package must
contain all the files required by the emulator and does not require further installation
(i.e. all library dependencies are included and no external configuration, e.g. in the
Windows registry).

2. A Freemarker data model used to configure the emulator within the Emulation
Framework is described, listing all parameters and their description. This then leads
into the generation of a template file for converting the data model into a configuration
file, including an example showing the data model and values, template file, and
output.

An appendix containing a complete template file for reference purposes is also included.

Version 1.0 2/18

How to: add emulators to the Emulation Framework

Version 1.0 3/18

Table of Contents

Executive Summary... 2

Table of Contents... 3

1. Introduction ... 4

1.1. Objectives and scope ... 4

1.2. About the Emulation Framework .. 4

1.3. About the KEEP project .. 6

1.4. Outline of this document ... 6

2. Requirements for adding an emulator to the Emulation Framework.. 7

2.1. Emulator Archive database schema ... 7

2.2. Emulator package... 8

2.3. Emulator configuration using templates.. 9

2.3.1. Example .. 12

2.4. Submitting the emulator to the Emulation Framework .. 15

Appendix A: Complete template file example for … emulator ... 16

How to: add emulators to the Emulation Framework

Version 1.0 4/18

1. Introduction

This document contains guidelines for emulator developers on how to develop their
emulators for easy integration within the Emulation Framework.

The Emulation Framework uses an Emulator Archive containing executables of emulators
that are used for rendering the hardware requirements of a selected environment. These
emulators are developed independently of the Emulation Framework by third parties, mainly
from the open source community. For the Emulation Framework to be able to run an
emulator, it has to be added to the Emulator Archive, a configuration file must be added so it
can be set up correctly, and the Emulation Framework must be informed of the addition.

1.1. Objectives and scope
The objective of this document is to inform emulator developers which steps they need to
take to ensure their emulators can be successfully added to the Emulator Archive while
keeping this integration process as simple as possible. Moreover, it outlines what
functionality the developers can add to ensure their emulators work seamlessly within the
Emulation Framework, and can (in the future), be controlled by the Emulation Framework.

This document is written for version 2.0.0 of the Emulation Framework. It is based on the
database schemas and settings of the corresponding Emulator Archive. Although all effort is
made to ensure backward and forward compatibility, future versions of the Emulation
Framework and Emulator Archive may change and this document may need to be updated
accordingly.

It references the following documents:

User Requirements
Document [URD]

http://www.keep-
project.eu/ezpub2/index.php?/eng/content/download/7918/396
23/file/KEEP_WP2_D2.2_complete.pdf

Architectural Design
Document [ADD]

http://emuframework.sourceforge.net/docs/Architectural-
Design-Document_1.1.pdf

System User Guide [SUG] http://emuframework.sourceforge.net/docs/System-User-
Guide_1.1.pdf

System Maintenance
Guide [SMG]

http://emuframework.sourceforge.net/docs/System-
Maintenance-Guide_1.1.pdf

EF Howto Remote
Emulation [HRE]

http://emuframework.sourceforge.net/docs/EF-howto-
remoteemulation-1.0.pdf

1.2. About the Emulation Framework
The Emulation Framework (EF) allows rendering of digital files and computer programs in
their native environment. It offers the potential to view these files using their original ‘look and
feel’, independent from the current view design of computer systems. The spectrum of
computer platforms and applications that can be supported is practically unlimited.

Release 2.0.0 of the EF1 supports emulation of the x86, Commodore 64, Amiga, Amstrad
CPC and Thomson T07 computer platforms. Emulation is done by using existing (open

1 Emulation Framework software release 2.0.0, available at: http://emuframework.sf.net

http://www.keep-project.eu/ezpub2/index.php?/eng/content/download/7918/39623/file/KEEP_WP2_D2.2_complete.pdf
http://www.keep-project.eu/ezpub2/index.php?/eng/content/download/7918/39623/file/KEEP_WP2_D2.2_complete.pdf
http://www.keep-project.eu/ezpub2/index.php?/eng/content/download/7918/39623/file/KEEP_WP2_D2.2_complete.pdf
http://emuframework.sourceforge.net/docs/Architectural-Design-Document_1.1.pdf
http://emuframework.sourceforge.net/docs/Architectural-Design-Document_1.1.pdf
http://emuframework.sourceforge.net/docs/System-User-Guide_1.1.pdf
http://emuframework.sourceforge.net/docs/System-User-Guide_1.1.pdf
http://emuframework.sourceforge.net/docs/System-Maintenance-Guide_1.1.pdf
http://emuframework.sourceforge.net/docs/System-Maintenance-Guide_1.1.pdf
http://emuframework.sourceforge.net/docs/EF-howto-remoteemulation-1.0.pdf
http://emuframework.sourceforge.net/docs/EF-howto-remoteemulation-1.0.pdf
http://emuframework.sf.net/

How to: add emulators to the Emulation Framework

Version 1.0 5/18

source) emulators that are carefully selected on their capability to mimic the functionality of
these platforms.

The EF 2.0.0 consists of three parts:

1. Core Emulation Framework

2. Software Archive

3. Emulator Archive

The Core EF is the technical heart of the system, performing the workflow steps (automatic
identification of file formats, selecting the required software and automatically configuring the
emulation environment) required for rendering the original environment. The Core EF
interacts with the Software Archive and the Emulator Archive for selecting the appropriate
emulators and software.

The Software Archive is a separate web service that contains the software (applications
and operating systems) available for the EF. The download package comes with three open
source operating systems, although an included wizard allows any software to be added.

The included operating systems are:

 FreeDOS – an open source MS DOS look-a-like operating system

 Damn Small Linux – a small Linux kernel with limited functionality

 Puppy Linux – a Linux based operating system with small footprint

The Emulator Archive is a separate web service that contains the emulators available for
the EF. The Emulator Archive also contains a wizard for more emulators to be added, and
this document outlines the preparation required for an emulator to be added to the Emulator
Archive.

The download package comes with the following open source emulators:

1. Dioscuri – x86 Java-based emulator capable of running MS DOS and Linux.

2. QEMU – x86 capable of running MS Windows and Linux.

3. VICE – Commodore 64 emulator

4. UAE – Amiga emulator

5. Java CPC – Amstrad emulator

6. BeebEm – BBC Micro emulator

7. Thomson – Thomson T07 emulator

The Core EF, Software Archive and Emulator Archive are developed by Tessella2 with
support from the National Library of the Netherlands (Koninklijke Bibliotheek, KB)3.

The EF provides an automated workflow for running emulators, as well as the application
and operating system software required for rendering files. The following illustration shows
the steps taken when providing an unknown digital file to be rendered in an emulated
computer environment.

2 Tessella, website available at: http://www.tessella.com
3 National Library of the Netherlands, website available at: http://www.kb.nl

http://www.tessella.com/
http://www.kb.nl/

How to: add emulators to the Emulation Framework

Version 1.0 6/18

The workflow consists of the following steps:

1. Characterise object – based on a given file (selected by a user) the EF identifies
which file format it is using the tool FITS. Note that this step is not required if a user
only wants to render an environment without a given file;

2. Determine environment – looks up which software and hardware is required to run
the file or create the environment;

3. Check available environment – matches the required environment with the best
environment available in the EF;

4. Configure software – retrieves selected software from the software archive and
(optionally) wraps the given file into a disk image;

5. Configure emulator – retrieves selected emulator from the emulator archive and
configures it using emulator specific templates. Attaches software and disk image
containing the required software and (optionally) selected file;

6. Render object – launch the prepared emulation environment.

1.3. About the KEEP project
KEEP (Keeping Emulation Environments Portable) is an international research project co-
funded by the European Union 7th Framework Programme. It does research into an
emulation-based preservation strategy and develops several tools to support that. The
consortium consists of eight organisations representing a wide range of stakeholders in
Europe: cultural heritage institutes, research institutes, commercial ICT partners and the
gaming industry. The project has a duration of three years and ends in February 2012.

More information can be found on the KEEP website4.

1.4. Outline of this document
Chapter 2 describes the requirements for adding an emulator to the Emulator Archive,
including a description of the Emulator Archive database schema, emulator package
restrictions and Freemarker templates.

4 KEEP project website, available at: : http://www.keep-project.eu

http://www.keep-project.eu/

How to: add emulators to the Emulation Framework

2. Requirements for adding an emulator to the Emulation Framework

The Emulation Framework is designed to be scalable. Although the installation kit comes
with a basic set of emulators that can be used out of the box, it is also possible to add new
emulators and enrich the set of supported computer platforms by the EF. If an emulator
developer would like to add his/her emulator to the EF, the following is required:

1. technical information about the emulator and computer platforms, software and file
formats it can run;

2. an emulator package containing:

a. a preinstalled emulator without any dependencies (e.g. libraries) with the
executing system;

b. a template file defining how the emulator must be invoked and configured.

If all this information is available, the emulator can be easily added using the Emulator
Archive wizard available in the administrator GUI of the EF. For more information on how to
use the wizard, please see [SUG].

The following sections explain the contents of the Emulator Archive, including the required
fields; the contents and restrictions of an emulator package; an explanation of the emulator
configuration templates; and how to add the emulator to the Emulator Archive.

2.1. Emulator Archive database schema
The Emulation Framework uses the Emulator Archive, a database that can be contacted via
a web service, to retrieve emulators. The Emulator Archive stores the emulator binary, along
with associated metadata, into various database tables, as outlined in the following sections.

Database table: emulators

Name Description Example

emulator_id Unique numerical ID, used for internal
database purposes

1

name (Simple) name of the emulator Dioscuri

Version Version of the emulator 0.7

exec_type Type of executable jar (platform independent),
exe (DOS/Windows), ELF
(Linux binary), etc.

exec_name Name of the executable Dioscuri-0.7.0.jar

exec_dir Relative path of the executable in the
installation package

e.g. ‘.’ or ‘./binary’

description (Extensive) description of the emulator Dioscuri, the modular
emulator

language_id Language of the emulator interface.
Has to be one of the languages defined
in the language table

En

package_name Name of the zipped package containing
all emulator files

Dioscuri_070Package.zip

Version 1.0 7/18

How to: add emulators to the Emulation Framework

package_type Compression of package Zip

package_version Version of package. This is different
from the emulator version as emulators
with the same version can be in
different packages

1

package BLOB of package

user_instructions Instructions for using the emulator Set at least the following
parameters from the
"Configure->Edit Config"
menu: BIOS, etc.

Emulators are associated with hardware platforms in the ‘emus_hardware’ table, which links
the emulator ID to the hardware ID. A one-to-many relationship is possible.

Database table: hardware

Name Description Example

hardware_id Unique numerical ID, used for internal database
purposes

1

name Name of the hardware platform X86

The emulators are required to be associated with an image format, which is the format of the
files it can read. This is usually defined as the format of the disk it reads, e.g. for x86
platforms disks are usually in FAT16, FAT32, NTFS or something similar. For console
emulators, this may be the image format of the cartridge, e.g. ROM or NDS for Nintendo
games.

Emulators are associated with image formats in the ‘emus_imageformats’ table, which links
the emulator ID to the image format ID. A one-to-many relationship is possible.

For emulators requiring a software image to run, e.g. an operating system, this table links the
software images it can run to the software image type in the Software Archive. If no software
image is required other than the digital object, then it is sufficient to provide the hardware
platform that is required by the digital object (e.g. d64 objects require C64 hardware to run,
but no further software is required to run the object).

Database table: imageformats

Name Description Example

imageformat_id Unique numerical ID, used for internal database
purposes

1

name Name of the image format FAT16

2.2. Emulator package

Version 1.0 8/18

How to: add emulators to the Emulation Framework

Version 1.0 9/18

The emulator package described in the previous section is a container file5 containing all the
files required by the emulator to run. The files will be extracted and placed in the directory
structure defined by the container file on the fly by the EF.

Note that the EF requires the emulator (and the associated files in the container) to
complete, i.e. the package must contain all the files required by the emulator and does not
require further installation. This means that all library dependencies need to be included, and
no external configuration, such as Windows registry settings can be used. This limitation is a
result of the workflow process being as simple as possible for the end user.

The emulator package must also contain one or more Freemarker template configuration
files for the Emulation Framework to configure the emulator to run. These templates are
described in the following section.

2.3. Emulator configuration using templates
Templates, a processing element that can be combined with a data model and processed by
a template engine to produce a result document, offer a flexible and generic way of creating
custom configurations for emulators, without having to write any language-specific code.

This allows emulator developers to write emulator-specific templates in pseudo-code (rather
than forcing them to use Java), and offers greater flexibility by reading these templates at
run-time when unpacking and configuring an emulator.

Figure 1 illustrates the processing flow of a template engine6. It consists of a data model,
which is a source of preformatted data to be used in the result; a template, which contains
the output format of the data; a template engine, which combines the data and the template
to produce the result, a document specifically formatted according to the template containing
the data from the data model.

5 This is the data compression format ‘ZIP’
6 The Freemarker template engine was chosen for the EF: http://freemarker.sourceforge.net/

How to: add emulators to the Emulation Framework

Figure 1: A diagram illustrating all of the basic elements and processing flow of a template
engine

In the EF, each emulator package contains a template, which combined with the data model
in the EF, and a specific Java template engine, will result in an emulator specific
configuration file.
Using templates different classes of template builders can be created that are able to
generate a configuration for an emulator. With these builders configurations can be created
that contain settings such as 'autorun', 'floppy disks', ‘memory size', 'cpu bits', etc.

Figure 2 shows a visualisation of the data model used in the EF.

Version 1.0 10/18

How to: add emulators to the Emulation Framework

Version 1.0 11/18

Figure 2: Visualisation of Emulation Framework template data model

Each variable has a string value; some of the branches shown are complex structures (of
which there may be more than one of each type within the model) that consist of multiple
string values. The emulator template can use any of these variables to generate the
necessary configuration file, be it in command-line form, XML format, or as properties file.
Not all variables may need to be set (for example, many console emulators have no notion of
the drive parameters or contain a fixed disk), but may use a subset of the above.

The model is extensible, and the diagram above shows the initial, simple, version. The
following tables describe the items that can be used as configuration parameters for an
emulator:

Basic template data model

Parameter Description Example

digobj The digital object to be attached to the
environment

file.txt

configDir The configuration directory in which the
generated property or XML file is to be placed

config/

configFile The name of the configuration file that is config.xml

How to: add emulators to the Emulation Framework

generated by the template

floppy.type The type of floppy disk that is attached to the
drive. This can only be one of the types defined
in the EF, listed on the right

XXX floppy types

floppy.num The floppy drive number. The EF will
automatically increment this number (starting at
0) based on the number of files provided to the
configuration. The template file must substitute
this number with the convention expected by the
emulator

0

floppy.digobj The name of the file that will be attached to the
floppy drive

disk1.img

floppy.inserted A boolean (true/false) indicating whether the
floppy disk is inserted (readable) or waiting to be
inserted

true / false

fixeddisk.master A boolean (true/false) indicating whether the
fixed disk is the master disk or a slave disk

true / false

fixeddisk.index The fixed disk number. The EF will automatically
increment this number (starting at 0) based on
the number of files provided to the configuration.
The template file must substitute this number
with the convention expected by the emulator

0

fixeddisk.enabled A boolean (true/false) indicating whether the
fixed disk is enabled (readable) or not

true/false

fixeddisk.swImg The name of the file that will be attached to the
fixed disk

fixeddisk1.img

fixeddisk.cylinders The number of cylinders, part of the geometry of
the fixed disk indicating the address of a physical
block of data

4

fixeddisk.heads The number of heads, part of the geometry of the
fixed disk indicating the address of a physical
block of data

2

fixeddisk.sectorsPerTrack The number of sectors per track, part of the
geometry of the fixed disk indicating the address
of a physical block of data

17

The data model is extensible in such a way that future versions can add new parameters that
can be used to configure emulators, such as CPU variables, memory settings, etc. As not all
emulators are required to use all the parameters, it is always possible to fall back on a more
basic version to provide a simple configuration of an emulator.

Each emulator should have at least a CLI (command line interface) template file, which will
create the command line parameters necessary to start the emulator (and perhaps configure
it), and in addition (optionally) an XML or properties template file, that completely describes
the emulator's configuration.

2.3.1. Template generation example

A simple example aids in illustrating the working of the template engine merging data and
template. In this example, the following colour coding is used:

Colour Description Usage

Version 1.0 12/18

How to: add emulators to the Emulation Framework

Version 1.0 13/18

_ (pink) Variables read from data file The template will read the values of these
variables from the data file

_ (yellow) Comments Explanation in the template file. This is
ignored by the template processor

_ (turquoise) Freemarker pseudo code Code (e.g. if/then/else, macro, etc.) used
by the template engine for simple
processing. See the Freemarker user
guide for a full explanation.

_ (dark yellow) Internally defined map (key-
value pairs)

Maps (key-value pairs) defined inside the
template (and not in the data file) that can
be used within the template for value
substitution. See the Freemarker user
guide for a full explanation.

_ (blue) Variable substitution (from
data file)

Variables enclosed within the ${...}
constructs will be replaced by their values,
read from the data file

_ (green) Constants (literal text) Literal text that is copied verbatim from
the template file to the output file

Given the following data file:

{masterobj:"file1.txt"
floppyDisks:{type:C645_25_170, num:0, digobj:"file2.txt", inserted:true
; type:C645_25_340, num:1, digobj:"file3.txt", inserted:false}}

The template (below) on the left will generate the output on the right (ignore any whitespace,
this purely for illustrative purposes):

How to: add emulators to the Emulation Framework

Template Output
<#-- Floppy drive letter definition -->
<#assign floppyDriveLetter = {"0":"8", "1":"9", "2":"10", "3":"11"}>

<#-- Drive type definition -->
<#assign driveTypes = {"C645_25_170":"1541", "C645_25_340":"1571"}>

<#-- Floppy drive macro -->
<#macro floppyDisk item>
<#if item.type?has_content>
-drive${floppyDriveLetter[item.num]}type
${driveTypes[item.type]}
-${floppyDriveLetter[item.num]}
${item.digobj}
</#if>
<#if item.inserted == "true">
+truedrive
<#else>
-truedrive
</#if>
</#macro>

##Section: preamble##
##Section: body##
-autostart
${masterobj}

<#list floppyDisks as floppy>
 <@floppyDisk item=floppy/>
</#list>

##Section: postscript##

##Section: preamble##
##Section: body##
-autostart
file1.txt

-drive8type
1541
-8
file2.txt
+truedrive
-drive9type
1571
-9
file3.txt
-truedrive

##Section: postscript##

Version 1.0 14/18

How to: add emulators to the Emulation Framework

This example contains two definitions, which are used as substitution lists: floppyDriveLetter,
which will substitute the correct drive number starting from index 0, as C64 drives start at 8;
and driveTypes, which will substitute the naming convention used by the EF, into the naming
convention the emulator uses. These are called from within the macro (see below), and the
parameter passed to it is substituted by the corresponding value, e.g. C645_25_170
becomes 1541.

Further there is one macro, the floppyDisk macro. It contains some logic that generates
command-line floppy drive settings given the floppyDisk parameters in the data file. Note that
this macro is called twice, once for each of the floppyDisk lists defined in the data file, each
containing four values. Each list is passed to the macro in turn as a variable called item,
whose values can be read by calling their name, e.g. item.inserted

Note that there is text which has been transcribed literally (e.g. -autostart); all items
contained in ${...} are substituted by the value from the variables from the data file (e.g.
${masterobj} is replaced by file1.txt).

The different section separators in the configuration file are used to guarantee order for
specific configuration options (such as XML headers/footers, command line arguments, etc.).
The EF parses the output and splits it into 3 sections based on these text literals. For this
example, all information is contained in the body section so the others are unused, but that
differs per emulator.

The EF uses the output, prepended with the executable name of the emulator (which is
picked up from the database, e.g. VICE.exe), which results a command-line invocation:

C:/>VICE.exe -autostart file1.txt -drive8type 1541 -8 file2.txt +truedrive
-drive9type 1571 -9 file3.txt –truedrive

Note that for clarity and illustration purposes, the attributes header, defining its structure in
the #ftl tag corresponding to the data model and containing all the parameters that can be
used in the template with their default values, is not included in this example. Note that not all
emulators will use all of the parameters in this header, even though they are listed. Some
parameters are in sub-maps, see for example fixedDisks and floppyDisks. Attributes that are
not used can be set or left undefined; the template engine will ignore them either way.

2.4. Submitting the emulator to the Emulation Framework
For full details on how to submit an emulator to the Emulation Framework, please see [SUG]

Version 1.0 15/18

How to: add emulators to the Emulation Framework

Version 1.0 16/18

Appendix A: Complete template files for the Dioscuri emulator

2.5. Command line template (templateCLI.ftl)7
<#ftl attributes={"configDir":"configDir", "configFile":"configFile",
"digobj":"digobj", "fixedDisks":{"enabled":"enabled", "index":"index",
"master":"master", "cylinders":"cylinders", "heads":"heads",
"sectorsPerTrack":"sectorsPerTrack", "swImg":"swImg"},
"floppyDisks":{"type":"type", "num":"num", "digobj":"digobj",
"inserted":"inserted"}}>
<#-- Dioscuri 0.4.3 - 0.6.0 configuration template (CLI) -->

<#-- Seperator macro -->
<#macro separator section="undefined">
##Section: ${section}##
</#macro>

<#-- Start of preamble -->
<@separator section="preamble"/>
java
-jar
<#-- Start of body -->
<@separator section="body"/>
-r
-c
${configFile}
<@separator section="postscript"/>
<#-- Start of postscript -->

2.6. XML template8
<#ftl attributes={"configDir":"configDir", "configFile":"configFile",
"digobj":"digobj", "fixedDisks":{"enabled":"enabled", "index":"index",
"master":"master", "cylinders":"cylinders", "heads":"heads",
"sectorsPerTrack":"sectorsPerTrack", "swImg":"swImg"},
"floppyDisks":{"type":"type", "num":"num", "digobj":"digobj",
"inserted":"inserted"}}>
<#-- Dioscuri 0.4.3 - 0.6.0 configuration simple template (CLI) -->

<#-- Floppy drive letter definition -->
<#assign floppyDriveLetter = {"0":"A", "1":"B"}>

<#-- Drive type definition -->
<#assign driveTypes = {"FAT3_5_720":"720K", "FAT3_5_1440":"1.44M",
"C645_25_170":"unsupported drive type", "C645_25_340":"unsupported drive
type"}>

<#-- Seperator macro -->

7
http://emuframework.svn.sourceforge.net/viewvc/emuframework/EmulatorArchive/trunk/packages/tem
plates/Dioscuri/templateCLI.ftl?revision=7
8
http://emuframework.svn.sourceforge.net/viewvc/emuframework/EmulatorArchive/trunk/packages/tem
plates/Dioscuri/templateXML.ftl?revision=299

http://emuframework.svn.sourceforge.net/viewvc/emuframework/EmulatorArchive/trunk/packages/templates/Dioscuri/templateCLI.ftl?revision=7
http://emuframework.svn.sourceforge.net/viewvc/emuframework/EmulatorArchive/trunk/packages/templates/Dioscuri/templateCLI.ftl?revision=7
http://emuframework.svn.sourceforge.net/viewvc/emuframework/EmulatorArchive/trunk/packages/templates/Dioscuri/templateXML.ftl?revision=299
http://emuframework.svn.sourceforge.net/viewvc/emuframework/EmulatorArchive/trunk/packages/templates/Dioscuri/templateXML.ftl?revision=299

How to: add emulators to the Emulation Framework

<#macro separator section="undefined">
##Section: ${section}##
</#macro>

<#-- Floppy disk macro -->
<#macro floppyDisk item>
 <floppy>
<#if item.inserted == "true">
 <enabled>true</enabled>
 <inserted>true</inserted>
<#else>
 <enabled>false</enabled>
 <inserted>false</inserted>
</#if>
 <driveletter>${floppyDriveLetter[item.num]}</driveletter>
 <diskformat>${driveTypes[item.type]}</diskformat>
 <writeprotected>false</writeprotected>
 <imagefilepath>${item.digobj}</imagefilepath>
 </floppy>
</#macro>

<#-- Fixed disk macro -->
<#macro fixedDisk item>
 <harddiskdrive>
<#if item.enabled == "true">
 <enabled>true</enabled>
<#else>
 <enabled>false</enabled>
</#if>
 <channelindex>${item.index}</channelindex>
<#if item.master == "true">
 <master>true</master>
<#else>
 <master>false</master>
</#if>
 <autodetectcylinders>true</autodetectcylinders>
 <cylinders>${item.cylinders}</cylinders>
 <heads>${item.heads}</heads>

<sectorspertrack>${item.sectorsPerTrack}</sectorspertrack>
 <imagefilepath>${item.swImg}</imagefilepath>
 </harddiskdrive>
</#macro>

<#-- Start of preamble -->
<@separator section="preamble"/>
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<emulator debug="false">
 <architecture name="Von Neumann">
 <modules>
 <bios>
 <sysbiosfilepath>images/bios/BIOS-bochs-
latest</sysbiosfilepath>
 <vgabiosfilepath>images/bios/VGABIOS-lgpl-
latest</vgabiosfilepath>

<ramaddresssysbiosstartdec>983040</ramaddresssysbiosstartdec>

<ramaddressvgabiosstartdec>786432</ramaddressvgabiosstartdec>
 <bootdrives>
 <bootdrive0>Hard Drive</bootdrive0>

Version 1.0 17/18

How to: add emulators to the Emulation Framework

Version 1.0 18/18

 <bootdrive1>None</bootdrive1>
 <bootdrive2>None</bootdrive2>
 </bootdrives>
 <floppycheckdisabled>false</floppycheckdisabled>
 </bios>
 <cpu debug="false">
 <cpu32bit>true</cpu32bit>
 <speedmhz>5</speedmhz>
 </cpu>
 <memory debugaddressdecimal="9295" debug="false">
 <sizemb>16</sizemb>
 </memory>
 <pit debug="false">
 <clockrate>5</clockrate>
 </pit>
 <keyboard debug="false">
 <updateintervalmicrosecs>200</updateintervalmicrosecs>
 </keyboard>
 <mouse debug="false">
 <enabled>false</enabled>
 <mousetype>serial</mousetype>
 </mouse>
 <video debug="false">
 <updateintervalmicrosecs>40000</updateintervalmicrosecs>
 </video>
<#-- Start of body -->
<@separator section="body"/>
 <fdc debug="false">
 <updateintervalmicrosecs>250</updateintervalmicrosecs>
 <#list floppyDisks as floppy>
 <@floppyDisk item=floppy/>
 </#list>
 </fdc>
 <ata debug="false">
 <updateintervalmicrosecs>100000</updateintervalmicrosecs>
 <#list fixedDisks as fixed>
 <@fixedDisk item=fixed/>
 </#list>
 </ata>
<@separator section="postscript"/>
<#-- Start of postscript -->
 </modules>
 </architecture>
</emulator>

	1. Introduction
	1.1. Objectives and scope
	1.2. About the Emulation Framework
	1.3. About the KEEP project
	1.4. Outline of this document

	2. Requirements for adding an emulator to the Emulation Framework
	2.2. Emulator package
	2.3. Emulator configuration using templates
	2.4. Submitting the emulator to the Emulation Framework

	Appendix A: Complete template files for the Dioscuri emulator
	2.5. Command line template (templateCLI.ftl)
	2.6. XML template

