

Keeping Emulation Environments Portable

FP7-ICT-231954

System Maintenance Guide

for the Emulation Framework

version 1.0 (May 2011)

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 2/30

Deliverable number Part of deliverable D2.3 (based on I2.2)

Nature Report

Dissemination level CO

Status Draft / Finalised / Reviewed / Final

Workpackage number WP2

Lead beneficiary TES

Author(s) Bram Lohman (Tessella)

Document history

Revisions

Version Date Author Changes

0.1 23-05-2011 Bram Lohman Initial version

1.0 30-05-2011 Bram Lohman Prepared for release

1.0 10-11-2011 Bart Kiers Adjusted incorrect links to
SVN repository.

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 3/30

Executive Summary

This document is a System Maintenance Guide for the Emulation Framework. The EF is
software developed by the international KEEP project, co-funded by the European Unions 7th
Framework Programme.

The System Maintenance Guide outlines how to build and maintain the system, and how to
set up the development environment.

Developed in Java, the system is by definition cross-platform and can therefore be
developed on any platform that supports Java. An Ant build script is provided to perform all
necessary build tasks related to the project, such as compiling the source code, launching
the unit test suite, setting up the database, running static analysis tools or building a release
package.

The Emulation Framework has been developed as a library, and as such is intended for use
by an external system; it doesn’t constitute a stand-alone product on its own. However, for
development and demonstration purposes, two access methods have been developed: a
built-in shell that allows direct access to the public Application Programming Interface (API);
and a Graphical User Interface (GUI). A list and description of the available commands for
the shell is included in this document.

The Emulation Framework has three main external dependencies: an Emulator Archive, a
Software Archive and a technical metadata registry. The former is used to access (certified)
Emulator Packages. The Software Archive provides software images of operating systems
and applications that the emulators require to render the environment. Finally, the technical
metadata registry is required for retrieving information about which computer platform
dependencies exist for digital objects (e.g. WordPerfect documents require the application
WordPerfect, operating system MS DOS and an x86 PC or compatible architecture. For each
of these dependencies, a simple prototype has been created to be able to fully demonstrate
the Emulation Framework. The registry prototype is incorporated in the Software Archive
prototype.

Several objects used within the framework, such as Emulator Packages, Software Packages,
and Pathways make use of XML schema’s describing their properties. For each of these
objects, the relevant XML schema is described and a sample file is included.

Examples are provided showing how to employ the basic functionality of the framework when
running from the Command Line Interface.

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 4/30

List of Related Documents

Description of Work [DoW] Overall project description

User Requirements Document [URD] Requirements for the Emulation Framework

Architectural Design Document [ADD] Design for the Emulation Framework

System User Guide [SUG] User and administrator guide for Emulation
Framework

Abbreviations

Emulation Framework EF

Graphical User Interface GUI

Application Programming Interface API

Web Service Description Language WSDL

File Information Tool Set FITS

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 5/30

Table of Contents

Executive Summary... 3

Table of Contents... 5

1 Introduction ... 6

1.1 Purpose and scope ... 6

1.2 Context of this Issue.. 6

1.3 About KEEP .. 6

1.4 About the software .. 6

2 System Context and Interfaces .. 7

2.1 Overview and Context ... 7

3 Configuration... 8

4 The Development Environment.. 10

4.1 Source files ... 10

4.2 Example development setup... 10

4.3 Build system.. 11

4.4 Auto-generating required source files ... 12

4.5 Managing dependencies ... 12

4.6 Setting up the internal database.. 13

4.7 Building the Emulation Framework JAR.. 14

4.7.1 Quick Guide to running the Emulation Framework .. 14

4.8 Creating a release package .. 15

5 Emulation Framework dependencies .. 16

5.1 Technical registry .. 16

5.2 Emulator Archive... 16

5.3 Software Archive ... 16

6 Models and schemas .. 18

6.1 Emulator Package... 18

6.2 Emulator Archive web services ... 19

6.3 Pathway schema... 21

6.4 Software Package schema.. 23

6.5 Software Archive web services ... 25

7 Public API .. 28

7.1 Running an emulation process manually .. 28

8 Appendix A: Ant targets ... 30

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 6/30

1 Introduction

1.1 Purpose and scope
This document provides information about how the Emulation Framework (EF) is
constructed, maintained and deployed. It is intended for developers and, to a limited extent,
system administrators who need to maintain the software. It does not describe how to use or
install the system; this is covered by the EF System User Guide [SUG].

This document covers the core software, internal database and supporting objects that make
up the Emulation Framework application. The aim of this document is to aid in developing,
installing and maintaining the application.

Although this document gives an outline of the inner workings of the application, as well as
the interfaces to external systems, it does not cover details of their setup or maintenance.
Neither is this a detailed guide to the overall structure of the EF – this can be found in the EF
Architectural Design Document [ADD].

1.2 Context of this Issue

This is the first version of the SMG for version 1.0 of the Emulation Framework.

This document describes the Emulation Framework environment that has been released in
May 2011. This includes two prototype archives (Emulator and Software Archive), some
sample test data, the Emulation Framework, and a GUI.

1.3 About KEEP
KEEP (Keeping Emulation Environments Portable) is a research project co-funded by the
European Union 7th Framework Programme. It does research into an emulation-based
preservation strategy and develops several tools to support that. The consortium consists of
nine organisations representing a wide range of stakeholders in Europe: cultural heritage
institutes , research institutes, commercial partners and the gaming industry. The project has
a duration of three years and ends February 2012.

More information can be found on the KEEP website: http://www.keep-project.eu

1.4 About the software
The EF software can be divided into Core, Software Archive and Emulator Archive
components. The Core is the technical heart of the system, performing the automatic
characterisation of file formats, selecting the required software and automatically configuring
the emulation environment. It has a simple GUI to interact directly with the user. For selecting
the software and emulator, the Core interacts with external services such as technical
registries containing file format classifications, the Software Archive that contains disk
images and the Emulator Archive that contains the emulators available for the EF.

The Core, Software Archive and Emulator Archive are developed by Tessella with support
from the National Library of the Netherlands. The Core GUI is developed by the National
Library of the Netherlands.

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 7/30

2 System Context and Interfaces

2.1 Overview and Context

The following diagram is taken from the URD. It shows the context and boundaries of the
Emulation Framework. The task of the EF is to provide users access to digital objects of any
kind via emulation.

Figure 1 shows a high-level overview of the system (green, in scope) and its boundaries
(grey, outside system scope). Within the EF a distinction is made in Core and GUI. The Core
is responsible for managing emulation processes while the GUI provides a rendering
environment plus additional services to the user.

Emulation Framework

Portal

Digital archive

GUI

Core

External
Emulator/
Software
Archive

Additional
metadata

Virtual layer (portability)

Figure 1 : EF system overview and system boundaries

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 8/30

3 Configuration

The configuration of the Core is stored in a file called user.properties, and contains the
internal database connection properties, the location of the Emulator and Software Archive,
as well as the various directories used by the system.

Property key Default property value Comment
h2.db.driver org.h2.Driver JDBC driver class

h2.jdbc.prefix jdbc:h2: JDBC url prefix

h2.db.url ./database/h2/EF_engine Database location on disk

h2.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created if it doesn’t exists (FALSE), or fail if it doesn’t
exist (TRUE)

h2.db.server ;AUTO_SERVER=TRUE The database connection type

h2.db.schema ;SCHEMA=engine Name of the schema used for the internal database

h2.db.admin sa Database admin login name

h2.db.adminpassw CEF_Engine Database admin password

h2.db.user cef Database user login name

h2.db.userpassw cef Database user password

software.archive.url http://localhost:9000/softwarearchive/ Location of the Software Archive

emulator.archive.url http://localhost:9001/emulatorarchive/ Location of the Emulator Archive

exec.dir ./exec Temporary directory where the emulators are
installed for use (will be deleted after use)

tmp.dir ./tmp Directory used by the host system to store temporary
files

The GUI has a separate configuration file called gui.properties.

This file contains the database connection parameters for the different components;
depending on access level, this may be just the EF, or the EF, Emulator Archive and
Software Archive.

Property key Default property value Comment
ef.db.driver org.h2.Driver JDBC driver class

ef.jdbc.prefix jdbc:h2: JDBC url prefix

ef.db.url ./database/h2/EF_engine Database location on disk

ef.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created if it doesn’t exists (FALSE), or fail if it doesn’t
exist (TRUE)

ef.db.server ;AUTO_SERVER=TRUE Database connection type

ef.db.schema.name engine Name of the schema used for the internal database

ef.db.schema ;SCHEMA=engine Name of the schema used for the internal database

ef.db.admin sa Database admin login name

ef.db.adminpassw CEF_Engine Database admin password

ef.db.user cef Database user login name

ef.db.userassw cef Database user password

ea.db.driver org.h2.Driver JDBC driver class

ea.jdbc.prefix jdbc:h2: JDBC url prefix

ea.db.url ./ea/database//EF_ea Database location on disk

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 9/30

ea.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created if it doesn’t exists (FALSE), or fail if it doesn’t
exist (TRUE)

ea.db.server ;AUTO_SERVER=TRUE Database connection type

ea.db.schema.name emulatorarchive Name of the schema used for the internal database

ea.db.schema ;SCHEMA=emulatorarchive Name of the schema used for the internal database

ea.db.admin sa Database admin login name

ea.db.adminpassw EA_Engine Database admin password

ea.db.user ea Database user login name

ea.db.userassw ea Database user password

swa.db.driver org.h2.Driver JDBC driver class

swa.jdbc.prefix jdbc:h2: JDBC url prefix

swa.db.url ./database/h2/EF_swa Database location on disk

swa.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created if it doesn’t exists (FALSE), or fail if it doesn’t
exist (TRUE)

swa.db.server ;AUTO_SERVER=TRUE Database connection type

swa.db.schema.name softwarearchive Name of the schema used for the internal database

swa.db.schema ;SCHEMA=softwarearchive Name of the schema used for the internal database

swa.db.admin sa Database admin login name

swa.db.adminpassw SWA_Engine Database admin password

swa.db.user swa Database user login name

swa.db.userassw swa Database user password

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 10/30

4 The Development Environment

The Emulation Framework makes use of standard tools, and therefore no specific
development environment is required. The following tools are used to access, build and
develop the project:

 Subversion (SVN) Source code revision control system

 Sun Java 1.6 Java Development Kit (JDK)

 Sun Java 1.6 Java Runtime Environment (JRE)

 Apache Ant 1.7.x build system1

 Apache Ivy 2.x.x dependency manager2

 H2 DBMS engine

All these tools are open-source and freely obtainable. It is recommended to use the version
described above.

4.1 Source files
The EF code is hosted in a Subversion (SVN) repository, available at:

http://emuframework.svn.sourceforge.net/viewvc/emuframework/Core/

http://emuframework.svn.sourceforge.net/viewvc/emuframework/EmulatorArchive/

http://emuframework.svn.sourceforge.net/viewvc/emuframework/SoftwareArchive/

Note: this SVN repository can be accessed (read-only) by anyone, but requires
authentication for committing (uploading) files.

The ‘trunk’ contains the main (current) development branch. There is a ‘branches’ directory
that contains the different versions used during development of experimental
changes/modifications. The ‘tag’ directory contains, as its name indicates, the various tagged
copies of the trunk corresponding to a particular ‘frozen’ version.

4.2 Example development setup
A common Java software development platform is Eclipse3. Below are the steps to set up the
project in Eclipse.

1 http://ant.apache.org/
2 http://ant.apache.org/ivy/
3 http://www.eclipse.org/

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 11/30

Each component should be checked out as a separate project.

The image shows the directories to add as source directories, along with the default output
folder as specified in the Ant script.

The relevant libraries – the JAR files from the 'lib/' directory – will need to be added to the
build path4.

4.3 Build system
It is recommended to use the provided Ant build script (build.xml) to compile, build and test
the code. Ant is cross-platform and independent of the development environment.

The build.xml file relies on a build.xml.common file for certain macros used in the targets.
The Ivy targets also rely on the ivy.xml, ivy-external.xml and ivysettings.xml files. A
selection of common Ant targets is listed in Table 1. A comprehensive set can be found in
Appendix A.

Table 1: Selection of common Ant script targets
Ant target Comment

compile Compiles the code base

4 Note: these libraries are downloaded using the Ivy dependency manager, and may not exist until the
relevant action is performed. See section �

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 12/30

clean
Deletes output files and directories created during a build, i.e. ./build,
./src/generated/

db.create Creates and populates the internal database

db.drop Deletes the database

generated.src Generates source code from WSDL/XSD files

ivy-publish Publish the Core jar to the repository

jar Creates a JAR

javadoc Runs the javadoc, document generator for Java source code

release Creates a release package for the Core project

release.installer

Creates a release package for the Core, Emulator Archive and Software
Archive using IzPack. Requires the Emulator and Software Archive to be
available and build

test.run Prepares and runs the unit tests

4.4 Auto-generating required source files
The development environment requires several auto-generated files for it to run correctly.
These are generated by Apache CXF and placed by default in the src/generated directory.
The Ant target generated.src will run the necessary code to generate these files.

Apache CXF uses the following input files to generate Java code:

 ./resources/external/softwarearchive/softwarearchive.wsdl

 ./resources/external/softwarearchive/PathwaySchema.xsd

 ./resources/external/softwarearchive/SoftwarePackageSchema.xsd

 ./resources/external/emulatorarchive/emulatorarchive.wsdl

 ./resources/external/emulatorarchive/EmulatorPackageSchema.xsd

4.5 Managing dependencies
To use Ivy, Apache Ant has to be set up to support it. The latest version of Ivy should be
downloaded from http://ant.apache.org/ivy/download.cgi. This is typically a zip file, it is not
necessary to install the whole system. The Ivy jar file (ivy-n.n.n.jar e.g. ivy-2.1.0.jar) can be
extracted from the archive and added to the ant lib directory (e.g. C:\Program Files\apache-
ant-1.8.0\lib).

In a development environment, e.g. Eclipse, the Ivy jar has to be added to the Ant classpath.
This can be done via Window -> Preferences -> Ant -> Runtime (Classpath -> Add JARs)

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 13/30

Make sure that the development environment uses the same version of Ant as required by
the Ivy jar.

Note: Ant needs several jars to run the build script properly; these jars are kept locally in the
‘./lib-local/ant’ directory. Also, not all jars are published on Maven (e.g. DROID, FITS, etc.).
For these, a local copy is kept in ‘./lib-local/external’. The ivy-external.xml file is defined
which retrieves these jars. The main ivy.xml5 references these jars as a normal dependency.

4.6 Setting up the internal database
The Core EF uses an internal database to store metadata information. The Subversion
repository includes a database that is configured for use, but the Ant script provides targets
to generate a database. The targets starting with ‘db.*’ can be used to generate this
database.

The database used is H2, a Java based database with a small footprint and an integrated
web-based database viewer.

The viewer can be started by running the H2 library; it should automatically open a browser
with the log-in screen.

5 See http://mvnrepository.com/ for Apache Ivy dependency links

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 14/30

4.7 Building the Emulation Framework JAR
Given the Ant build script, it is very easy to build core by simply running the jar target which
will generate the compiled class files and the JAR in the build folder.

4.7.1 Quick Guide to running the Emulation Framework

A simple command line script that can run the Emulation Framework is generated as part of
the release.installer target. Make sure that the required Software Archive and Emulator
Archive releases are available (run the respective release targets in the Software Archive
and Emulator Archive build files).

Currently the default interface is the test GUI, part of the Emulation Framework. This can be
changed to a command line by changing the main class in the manifest jar. The Ant target jar
can be changed to do this automatically.

Command Line Interface

The Command Line Interface, based on BeanShell, is provided as part of the Emulation
Framework Core so that it can be debugged without requiring an external interface such as a
front-end GUI.

This built-in shell offers direct access to the public API (see section 7) by creating an
instance m of the Kernel object that would normally be used by the host program. The auto-
completion (using the tab key) of methods name and file/directory paths makes for quicker
and easier usability.

Graphical User Interface

The Graphical User Interface provides a simple clickable interface for testing purposes. It
offers access to most of the methods of the public API, but not all. However, it provides a
user-friendly alternative to the Command Line Interface.

Basic workflow

Here is a list of the basic commands:

- Digital object characterisation:

 m.characterise(new File(“/my/path/to/file/myFile.xyz”))

- Start an emulation process from a digital object with no metadata

 m.start (new File(“./testData/digitalObjects/text.txt”))

- Start an emulation process from a digital object with metadata included

 m.start (new File(“./testData/digitalObjects/text.txt”), new File(“./testData/digitalObjects/text.txt.xml”))

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 15/30

4.8 Creating a release package
A release package can be easily created by calling the release.installer target in the Ant
script. This will call IzPack6 which in turns uses ./resources/release/install.xml to configure
the installation package.

6 IzPack website, available at: http://izpack.org/

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 16/30

5 Emulation Framework dependencies

The Emulation Framework relies on several components to successfully render an
environment. In this chapter, these dependencies and their configuration are described.

5.1 Technical registry
The EF may use technical registries to retrieve technical information about file format and
platform dependencies such as required operating system, applications, drivers, etc.

Currently, no such technical registry is operational and openly available, although a proof of
concept has been shown to work with PRONOM. As such, the Software Archive contains
simple metadata to generate Pathways.

For external registries within the EF, each technical registry has its own class file. For
example:

 eu.keep.registry.UDFRRegistry

 eu.keep.registry.PronomRegistry

The information about these registries and their metadata is stored in the internal EF
database.

5.2 Emulator Archive
The EF uses emulators to render the environment. To organise the available emulators that
are found compatible with the EF, an Emulator Archive has been created. This archive runs
as a separate web-service, which the EF can access as a client. The server-client interaction
is achieved via web services (Apache CXF library) and uses a WSDL as an interface
definition. The Emulator Archive also defines an EmulatorPackage object using XSD. Both
files, located in Core/trunk/resources/external/emulatorarchive/, are linked to the
Emulator Archive repository:

EmulatorArchive/trunk/resources/emulatorarchive.wsdl
EmulatorArchive/trunk/resources/EmulatorPackageSchema.xsd

For details of these schemas, please see chapter 6.

Since the framework doesn't hold any emulators locally, it depends on the Emulator Archive
to supply these. As the emulation process is being configured, the Emulator Archive server
will be contacted for the appropriate emulator that can satisfy the selected emulation
Pathway.

The Emulator Archive is contained as a separate project in the Emulation Framework.

5.3 Software Archive
A Software Archive has been created to manage the software required by the emulators.
Similar to the Emulator Archive, the Software Archive runs as a separate web service, with
the EF as a client. The server-client interaction is achieved via web-services (Apache CXF
library). The Software Archive also defines Pathway and SoftwarePackage objects using
XSD. All three files, located in Core/trunk/resources/external/softwarearchive/, are linked
to the Software Archive repository:

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 17/30

SoftwareArchive/trunk/resources/softwarearchive.wsdl
SoftwareArchive/trunk/resources/SoftwarePackageSchema.xsd
SoftwareArchive/trunk/resources/PathwaySchema.xsd

For details of these schemas, please see chapter 6.

Since the framework doesn't hold any software images locally, it depends on the Software
Archive to supply these. As the emulation process is being configured, the Software Archive
server will be contacted for the appropriate software image that can satisfy the selected
emulation Pathway.

The Software Archive is contained as a separate project in the Emulation Framework.

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 18/30

6 Models and schemas

6.1 Emulator Package
Schema: EmulatorPackageSchema.xsd

Each EF-compliant emulator is transferred from the Emulator Archive to a receiver in an
Emulator Package, schematically shown in Figure 2. It contains a package element
describing the package itself with an id, version and type field, as well as a package name.
The emulator element describes the emulator software and includes some descriptive fields
(such as name, version, and description) and technical elements such as a list of hardware
that the emulator can emulate, a list of software imageFormat (such as FAT12, FAT32, D64,
etc.) that the emulator can read. The executable element contains information about the
executable itself. The type field defines the type of executable (such as jar for java-based
emulators, exe for Windows native executables and ELF for Linux executables); the name
field contains the executable file name. The location field contains the local path within the
container file from where the binary will run.

Figure 2: Emulator Package schema

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 19/30

Note: the version number of the package element is different from the version number of the
emulator. The latter corresponds to the actual emulator software version number whereas
the package version only concerns the package itself which can then be used to update
existing packages with newer package version if necessary.

An example of metadata that corresponds to the schema above is as follows:

<ea:emulatorPackage xmlns:ea="http://emulatorarchive.keep-project.eu/EmulatorPackage">

<package id="1" version="1" type="zip">

<name>Dioscuri_042.zip</name>

</package>

<emulator>

<name>Dioscuri</name>

<version>0.4.2</version>

<description>Dioscuri, the modular emulator</description>

<hardware>x86</hardware>

<imageFormat>FAT12</imageFormat>

<imageFormat>FAT16</imageFormat>

<executable type="jar">

<name>Dioscuri-0.4.2.jar</name>

<location>.</location>

</executable>

</emulator>

</ea:emulatorPackage>

6.2 Emulator Archive web services
Schema: emulatorarchive.wsdl

The Emulator Archive offers several web services to obtain data from the database. The
externally available services are shown in Figure 3, along with their parameters.

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 20/30

Figure 3: Emulator Archive web services

The following table explains these functions in more detail:

Function Input Output Explanation

DownloadEmulator Emulator
Package
ID

Binary Stream
(File)

Downloads the emulator
binary from the database,
given a valid emulator ID

GetEmulatorPackage Emulator
Package
ID

Emulator Package Retrieves the emulator
metadata (not including the
binary) given a valid
emulator ID

GetEmulatorPackageList None All Emulator
Packages

Retrieves the emulator
metadata (not including the
binary) for all packages in
the database.
Note that a dummy input
must be supplied

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 21/30

GetSupportedHardware None All hardware IDs Retrieves all hardware IDs
in the database
Note that a dummy input
must be supplied

GetEmusByHardware Hardware
ID

Emulator Packages Retrieves the emulator
metadata (not including the
binary) for all packages that
support the given hardware
ID.

6.3 Pathway schema
Schema: PathwaySchema.xsd

The environment that can render digital objects, consisting of the digital object file format,
and hardware platform and possibly an application and/or operating system, is called a
Pathway. The Software Archive defines a Pathway in an XSD schema, which is
schematically shown in Figure 4 below:

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 22/30

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 23/30

Figure 4: Pathway schema

Each of the four elements has a mandatory ID, name and (except for the hardware platform)
version. Other optional elements include a description, creator, reference, etc.

Although a Pathway is made up of four elements (digital object format, application, operating
system and hardware platform), only the object format and platform are mandatory. The
application and operating system may not need to be defined for a valid Pathway.

6.4 Software Package schema
Schema: SoftwarePackageSchema.xsd

The software required to render digital objects is transferred from the Software Archive to a
receiver in a Software Package, schematically shown in Figure 5.

The Software Package contains a software image which consists of one or more operating
systems containing one or more applications. The descriptive metadata has a Software
Package id (attribute), and format and description elements. The format element
corresponds to the imageFormat element in the Emulator Package schema.

Each operating system (os element) and application (app element) is defined using the
Pathway operating system and application type, respectively.

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 24/30

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 25/30

Figure 5: Software Package Schema

An example of metadata that corresponds to the schema above is as follows:

<softwarePackage id="IMG-1000">

<description>MS-DOS 5.00 Operating System + basic text editor EDIT 1.0</description>

<format>FAT32</format>

<pw:os id="OPS-2000">

 <name>MSDOS</name>

 <version>5.00</version>

</pw:os>

<pw:app id="APP-3000">

 <name>EDIT</name>

 <version>1.0</version>

</pw:app>

<pw:app id="APP-3001">

 <name>Q-BASIC</name>

 <version>2.1</version>

</pw:app>

</softwarePackage>

6.5 Software Archive web services
Schema: softwarearchive.wsdl

The Software Archive offers several web services to obtain data from the database. The
externally available services are shown in Figure 6, along with their parameters.

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 26/30

Figure 6: Software Archive web services

The following table explains these functions in more detail:

Function Input Output Explanation

GetSoftwarePackageInfo Software
Package
ID

Software
Package

Retrieves the software
metadata (not including
the binary) given a valid
software ID

GetAllSoftwarePackagesInfo None All Software
Packages

Retrieves the software
metadata (not including
the binary) for all
packages in the
database.
Note that a dummy input
must be supplied

GetPathwaysByFileFormat File
Format

Pathways Retrieves the viable
Pathways for rendering
a file given the File

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 27/30

Format

GetSoftwarePackagesByPathway Pathway Software
Packages

Retrieves the software
metadata (not including
the binary) for all
packages that can
satisfy the given
Pathway.

DownloadSoftware Software
Package
ID

Binary Stream
(File)

Downloads the software
image from the
database, given a valid
Software Package ID

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 28/30

7 Public API

The API is defined by the interface definition in CoreEngineModel.java, which is
implemented by the Kernel.java class.

The following sections show how to use the Command Line interface to achieve different
results. For instructions on how to use the GUI, please refer to [SUG].

7.1 Running an emulation process manually
An emulation process can run manually, where all the steps normally done automatically
when using the start() methods can run sequentially. This allows the user to manually set the
options.

 Characterise a file

The characterisation process will return a list of Format object which can, in turn, be queried for more
detailed information about the identified format.

 m.characterise(new File(“/my/path/to/file/myFile.xyz”))

m.getTechMetadata(new File(“/my/path/to/file/myFile.xyz”))

m. getFileInfo(new File(“/my/path/to/file/myFile.xyz”))

 Retrieve Pathways for a given file format

Once a format has been selected, it is necessary to retrieve a list of Pathways that can render the
format.

 List<Format> formats = m.characterise(new File(“/my/path/to/file/myFile.xyz”))

List<Pathway> Pathways = m.getPathways(formats.get(0))

 m.isPathwaySatisfiable(Pathways.get(0))

The list of Pathways thus retrieved only represents a list of potential/theoretical Pathways but doesn't
have any knowledge of the available software and emulators that are available locally or via an archive.
It is therefore important to filter this list with only satisfiable Pathways, i.e. Pathways can actually be
rendered by the Emulation Framework. For this, the method isPathwaySatisfiable can be used to verify
the satisfiability of a given Pathway by checking the availability of the required emulator and software
images.

Similarly, an automatic selection of a valid Pathway can be achieved with a call to the method
autoSelectPathway which returns the first satisfiable Pathway.

 Set the list of allowed emulators

Before selecting an emulator, the list containing the emulators which are allowed to be used must be
populated. This can be done as follows:

 m.getWhitelistedEmus()

m.whiteListEmulator(1)

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 29/30

To remove an emulator from the allowed list, the method unListEmulator can be used

 Retrieve emulator/software images for a given Pathway

Once a Pathway has been selected, a list of compatible emulators and software images must be
produced.

To do so, a couple of method calls are provided.

First a list of emulator and a list of software image must be retrieved from the Pathway:

 m.getEmulatorsByPathway(Pathways.get(0))

m.getSoftwareByPathway(Pathways.get(0))

A matching between the list of emulators and software images has to be performed as certain emulators
may not be compatible with certain image formats. A map of emulators with their respective list of
compatible software images can be retrieved as follows.

 m.matchEmulatorWithSoftware(Pathways.get(0))

If an automatic selection of a specific emulator and software is required, the methods
autoSelectEmulator and autoSelectSoftwareImage can be used.

 Configure and run the emulation process

Once an emulator and software image have been selected, the emulation process needs to be
configured and started. This is achieved as follows:

 List<EmulatorPackage> emuList = m.getEmuListFromArchive()

List<SotfwarePackage> swList = m.getSoftwareListFromArchive()

 Integer i = m.prepareConfiguration(new File(“/my/path/to/file/myFile.xyz”), emuList.get(0), swList.get(0),
Pathways.get(0))

m.runEmulationProcess(i)

Note: the above example picks a random emulator and software; this is not recommended but shown for
illustrative purposes. It is suggested to use the previously shown emulator/software Pathway selection.

It is then possible to modify the default option set for the chosen emulator by retrieving its list of options,
modify them and finally reset them back, before actually building the configuration, by using the methods
getEmuOptions and setEmuOptions

Emulation Framework – System Maintenance Guide

Version 1.0 (May 2011)

 30/30

8 Appendix A: Ant targets

Table 2: Complete list of external Ant targets
Ant target Comment

compile Compiles the code base

checkstyle Runs checkstyle, the static code analysis tool for java source code

clean
Deletes output files and directories created during a build, i.e. ./build,
./src/generated/

copy.resources Copies the required resources (property files, schemas, etc.) to the classpath

db.create Creates and populates the internal database

db.drop Deletes the database

generated.src Generates source code from WSDL/XSD files

ivy-publish Publish the EFKernel jar to the repository

ivy-publish-external Publish the external jars to the repository

ivy-report Generates a report detailing all the dependencies of the module

ivy-resolve Resolves transitive dependencies

ivy-retrieve Retrieve dependencies into cache

jar Creates a JAR

javadoc Runs the javadoc, document generator for Java source code

release Creates a release package for the Core project

release.installer

Creates a release package for the Core, Emulator Archive and Software
Archive using IzPack. Requires the Emulator and Software Archive to be
available and build

svnstat Runs svnstat, a tool that generates statistic on subversion usage

test.compile Compiles the unit tests source code

test.copy.resources
Copies the required test resources (property files, schemas, etc.) to the
classpath

test.db.create Creates the test database

test.report Creates the junit html report

test.run Prepares and runs the unit tests

