

Keeping Emulation Environments Portable

FP7-ICT-231954

System Maintenance Guide

for the Emulation Framework

version 1.1.0 (December 2011)

Release date 21 December 2011

Release version 1.1.0

Author(s)
Bram Lohman (Tessella)
David Michel (Tessella)
Edo Noordermeer (Tessella)

Organisation KEEP project

Emulation Framework – System Maintenance Guide

Executive Summary

This is the System Maintenance Guide (SMG) for the Emulation Framework. The EF is
software developed by the international KEEP project, co-funded by the European Unions 7th
Framework Programme.

The System Maintenance Guide outlines how to build and maintain the system, and how to
set up the development environment.

Developed in Java, the system is by definition cross-platform and can therefore be
developed on any platform that supports Java. An Ant build script is provided to perform all
necessary build tasks related to the project, such as compiling the source code, launching
the unit test suite, setting up the database, running static analysis tools or building a release
package.

The Emulation Framework has been developed as a library, and as such is intended for use
by an external system; it doesn’t constitute a stand-alone product on its own. However, for
development and demonstration purposes, two access methods have been developed: a
built-in shell that allows direct access to the public Application Programming Interface (API);
and a Graphical User Interface (GUI). A list and description of the available commands for
the shell is included in this document.

The Emulation Framework has three main external dependencies: an Emulator Archive, a
Software Archive and a technical metadata registry. The Emulator Archive is used to access
(certified) Emulator Packages. The Software Archive provides software images of operating
systems and applications that the emulators require to render the environment. Finally, the
technical metadata registry is required for retrieving information about which computer
platform dependencies exist for digital objects (e.g. WordPerfect documents require the
application WordPerfect, operating system MS DOS and an x86 PC or compatible
architecture. For each of these dependencies, a simple prototype has been created to be
able to fully demonstrate the Emulation Framework. The registry prototype is incorporated in
the Software Archive prototype.

Several objects used within the framework, such as Emulator Packages, Software Packages,
and Pathways make use of XML schemas describing their properties. For each of these
objects, the relevant XML schema is described and a sample file is included.

Examples are provided showing how to employ the basic functionality of the framework when
running from the Command Line Interface.

EF Release 1.1.0 (December 2011) 2/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 3/39

Table of Contents

Executive Summary... 2

Table of Contents... 3

1 Introduction ... 5

1.1 Purpose and scope .. 5

1.2 Context of this Issue... 5

1.3 About the KEEP project.. 5

1.4 About the software in this release .. 5

2 System Context and Interfaces .. 6

2.1 Overview and Context .. 6

3 Configuration... 7

3.1 Core configuration .. 7

3.2 Emulator Archive configuration... 8

3.3 Software Archive configuration... 9

4 The Development Environment.. 10

4.1 Source files... 10

4.2 Example development setup .. 10

4.3 Managing dependencies .. 11

4.4 Build system ... 12

4.5 Auto-generating required source files... 13

4.6 Setting up the internal database... 13

4.7 Building the Emulation Framework JAR ... 13

4.8 Creating a release package.. 14

5 Emulation Framework dependencies .. 15

5.1 Technical registry ... 15

5.2 Emulator Archive .. 15

5.3 Software Archive .. 15

6 Database management ... 17

6.1 Core embedded database management .. 18

6.2 Emulator Archive database population... 19

6.3 Software Archive database population ... 20

7 Data model and schemas ... 23

7.1 Emulator Package .. 23

7.2 Emulator Archive web services .. 25

7.3 Dependency (pathway) schema... 27

Emulation Framework – System Maintenance Guide

7.4 Software Package schema... 29

7.5 Software Archive web services... 31

8 Quick Guide to running the Emulation Framework.. 34

9 Public API .. 35

9.1 Running an emulation process manually.. 35

10 Appendix A: Ant targets ... 37

11 Appendix B: language codes ... 38

EF Release 1.1.0 (December 2011) 4/39

Emulation Framework – System Maintenance Guide

1 Introduction

1.1 Purpose and scope
This document provides information about how the Emulation Framework (EF) is
constructed, maintained and deployed. It is intended for developers and, to a limited extent,
system administrators who need to maintain the software. It does not describe how to use or
install the system; this is covered by the EF System User Guide [SUG].

This document covers the core software, internal database and supporting objects that make
up the Emulation Framework application. The aim of this document is to aid in developing,
installing and maintaining the application.

Although this document gives an outline of the inner workings of the application, as well as
the interfaces to external systems, it does not cover details of their setup or maintenance.
Neither is this a detailed guide to the overall structure of the EF – this can be found in the EF
Architectural Design Document [ADD].

1.2 Context of this Issue

This version of the SMG describes version 1.1.0 of the Emulation Framework.

This document describes the Emulation Framework environment that has been released in
December 2011. This includes two prototype archives (Emulator and Software Archive),
some sample test data, the Emulation Framework, and a GUI.

1.3 About the KEEP project
KEEP (Keeping Emulation Environments Portable) is a research project co-funded by the
European Union 7th Framework Programme. It does research into an emulation-based
preservation strategy and develops several tools to support that. The consortium consists of
nine organisations representing a wide range of stakeholders in Europe: cultural heritage
institutes , research institutes, commercial partners and the gaming industry. The project has
a duration of three years and ends February 2012.

More information can be found on the KEEP website: http://www.keep-project.eu

1.4 About the software in this release
The EF software is divided into Core, Software Archive and Emulator Archive
components. The Core is the technical heart of the system, performing the automatic
identification of file formats, selecting the required software and automatically configuring the
emulation environment. It has a simple GUI to interact directly with the user. For selecting the
software and emulator, the Core interacts with external services such as technical registries
containing file format classifications, the Software Archive that contains disk images and the
Emulator Archive that contains the emulators available for the EF.

The Core, Software Archive and Emulator Archive are developed by Tessella with support
from the National Library of the Netherlands. The Core GUI is developed by the National
Library of the Netherlands.

EF Release 1.1.0 (December 2011) 5/39

http://www.keep-project.eu/

Emulation Framework – System Maintenance Guide

2 System Context and Interfaces

2.1 Overview and Context

The following diagram is taken from the URD. It shows the context and boundaries of the
Emulation Framework. The task of the EF is to provide users access to digital objects of any
kind via emulation.

Portal

Figure 1 shows a high-level overview of the system (green, in scope) and its boundaries
(grey, outside system scope). Within the EF a distinction is made in Core and GUI. The Core
is responsible for managing emulation processes while the GUI provides a rendering
environment plus additional services to the user.

Emulation Framework

Digital archive

GUI

Core

External
Emulator/
Software
Archive

Additional
metadata

Virtual layer (portability)

Figure 1 : EF system overview and system boundaries

EF Release 1.1.0 (December 2011) 6/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 7/39

3 Configuration

The Core, Emulator Archive and Software Archive components can be configured using
text-based property-files.

3.1 Core configuration
The configuration of the Core is stored in a file called user.properties, located in the
./eu/keep subdirectory, and contains the internal database connection properties, the location
of the Emulator and Software Archive, as well as the various directories used by the system.

Property key Default property value Comment
h2.db.driver org.h2.Driver JDBC driver class

h2.jdbc.prefix jdbc:h2: JDBC url prefix

h2.db.url ./database/h2/EF_engine Database location on disk

h2.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created (FALSE), or fail (TRUE) if it doesn’t exist.

h2.db.server ;AUTO_SERVER=TRUE The database connection type

h2.db.schema ;SCHEMA=engine Name of the schema used for the internal database

h2.db.admin sa Database admin login name

h2.db.adminpassw CEF_Engine Database admin password

h2.db.user cef Database user login name

h2.db.userpassw cef Database user password

software.archive.url http://localhost:9000/softwarearchive/ Location of the Software Archive

emulator.archive.url http://localhost:9001/emulatorarchive/ Location of the Emulator Archive

exec.dir ./exec Temporary directory where the emulators are
installed for use (will be deleted after use)

system.tmpdir ./tmp Directory used by the host system to store temporary
files

accepted.languages1 all Emulator and Software languages which are
accepted. Emulators or Software which use other
languages will not be selected or displayed.

Languages are entered as a comma-separated list of
2-letter ‘locale’-codes, e.g. en (English), nl (Dutch), fr
(French), de (German). See appendix B for a
complete list of language codes.

To accept all available languages, enter ‘all’.

The GUI has a separate configuration file called gui.properties, also located in the ./eu/keep
subdirectory.

This file contains the database connection parameters for the different components;
depending on whether the Emulation Framework was installed in ‘client’ or ‘server’ mode,
this may be just the EF, or the EF, Emulator Archive and Software Archive.

1 The list of accepted languages can also be configured via the EF GUI (see section 2.6 in the System
User Guide).

Emulation Framework – System Maintenance Guide

Property key Default property value Comment
ef.db.driver org.h2.Driver JDBC driver class

ef.jdbc.prefix jdbc:h2: JDBC url prefix

ef.db.url ./database/h2/EF_engine Database location on disk

ef.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created if it doesn’t exists (FALSE), or fail if it doesn’t
exist (TRUE)

ef.db.server ;AUTO_SERVER=TRUE Database connection type

ef.db.schema.name engine Name of the schema used for the internal database

ef.db.schema ;SCHEMA=engine Name of the schema used for the internal database

ef.db.admin sa Database admin login name

ef.db.adminpassw CEF_Engine Database admin password

ef.db.user cef Database user login name

ef.db.userpassw cef Database user password

ea.db.driver org.h2.Driver JDBC driver class

ea.jdbc.prefix jdbc:h2: JDBC url prefix

ea.db.url ./ea/database//EF_ea Database location on disk

ea.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created if it doesn’t exists (FALSE), or fail if it doesn’t
exist (TRUE)

ea.db.server ;AUTO_SERVER=TRUE Database connection type

ea.db.schema.name emulatorarchive Name of the schema used for the internal database

ea.db.schema ;SCHEMA=emulatorarchive Name of the schema used for the internal database

ea.db.admin sa Database admin login name

ea.db.adminpassw EA_Engine Database admin password

ea.db.user ea Database user login name

ea.db.userpassw ea Database user password

swa.db.driver org.h2.Driver JDBC driver class

swa.jdbc.prefix jdbc:h2: JDBC url prefix

swa.db.url ./database/h2/EF_swa Database location on disk

swa.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created if it doesn’t exists (FALSE), or fail if it doesn’t
exist (TRUE)

swa.db.server ;AUTO_SERVER=TRUE Database connection type

swa.db.schema.name softwarearchive Name of the schema used for the internal database

swa.db.schema ;SCHEMA=softwarearchive Name of the schema used for the internal database

swa.db.admin sa Database admin login name

swa.db.adminpassw SWA_Engine Database admin password

swa.db.user swa Database user login name

swa.db.userpassw swa Database user password

3.2 Emulator Archive configuration
Similar to the Core, the Emulator Archive also has a user.properties file for configuration. It
is located in the ./ea subdirectory and it contains the emulator database connection
properties, and the location of the Emulator Archive.

The table below outlines the configuration properties and their defaults.

EF Release 1.1.0 (December 2011) 8/39

Emulation Framework – System Maintenance Guide

Property key Default property value Comment
h2.db.driver org.h2.Driver JDBC driver class

h2.jdbc.prefix jdbc:h2: JDBC url prefix

h2.db.url ./ea/database//EF_ea Database location on disk

h2.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created (FALSE), or fail (TRUE) if it doesn’t exist.

h2.db.schema ;SCHEMA=emulatorarchive Name of the schema used for the internal database

h2.db.admin sa Database admin login name

h2.db.adminpassw EA_Engine Database admin password

h2.db.user ea Database user login name

h2.db.userpassw ea Database user password

server.soap.address http://localhost:9001/emulatorarchive/ webservice Server address

Note that the server.soap.address property must match the EF emulator.archive.url property
for the connection between the two components to be successful.

3.3 Software Archive configuration
Similar to the Core, the Software Archive also has a user.properties file for configuration. It
is located in the ./swa subdirectory and it contains the software database connection
properties, and the location of the Software Archive.

The table below outlines the configuration properties and their defaults.

Property key Default property value Comment
swa.db.driver org.h2.Driver JDBC driver class

swa.jdbc.prefix jdbc:h2: JDBC url prefix

swa.db.url ./database/h2/EF_swa Database location on disk

swa.db.exists ;IFEXISTS=TRUE Flag to indicate whether the database should be
created (FALSE), or fail (TRUE) if it doesn’t exist.

swa.db.schema ;SCHEMA=softwarearchive Name of the schema used for the internal database

swa.db.admin sa Database admin login name

swa.db.adminpassw SWA_Engine Database admin password

swa.db.user swa Database user login name

swa.db.userpassw swa Database user password

server.soap.address http://localhost:9000/softwarearchive/ Server address

Note that the server.soap.address property must match the EF software.archive.url property
for the connection between the two components to be successful.

EF Release 1.1.0 (December 2011) 9/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 10/39

4 The Development Environment

The Emulation Framework makes use of standard tools, and therefore no specific
development environment is required. The following tools are used to access, build and
develop the project:

 Subversion (SVN) Source code revision control system

 Sun Java 1.6 Java Development Kit (JDK)

 Sun Java 1.6 Java Runtime Environment (JRE)

 Apache Ant 1.7.x build system2

 Apache Ivy 2.x.x dependency manager3

 H2 DBMS engine

All these tools are open-source and freely obtainable. It is recommended to use the version
described above.

4.1 Source files
The EF code is hosted in three Subversion (SVN) repositories, available at:

http://emuframework.svn.sourceforge.net/viewvc/emuframework/Core/

http://emuframework.svn.sourceforge.net/viewvc/emuframework/EmulatorArchive/

http://emuframework.svn.sourceforge.net/viewvc/emuframework/SoftwareArchive/

Note: this SVN repository can be accessed (read-only) by anyone, but requires
authentication for committing (uploading) files.

The ‘trunk’ contains the main (current) development branch. There is a ‘branches’ directory
that contains the different versions used during development of experimental
changes/modifications. The ‘tag’ directory contains, as its name indicates, the various tagged
copies of the trunk corresponding to a particular ‘frozen’ version.

4.2 Example development setup
A common Java software development platform is Eclipse4. Below are the steps to set up the
project in Eclipse.

2 http://ant.apache.org/
3 http://ant.apache.org/ivy/
4 http://www.eclipse.org/

http://emuframework.svn.sourceforge.net/viewvc/emuframework/Core/
http://emuframework.svn.sourceforge.net/viewvc/emuframework/EmulatorArchive/
http://emuframework.svn.sourceforge.net/viewvc/emuframework/SoftwareArchive/

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 11/39

Each component should be checked out as a separate project.

The image shows the directories to add as source directories, along with the default output
folder as specified in the Ant script.

The relevant libraries – the JAR files from the 'lib/' directory – will need to be added to the
build path5.

4.3 Managing dependencies
The EF uses Ivy to manage the jar-dependencies.

To use Ivy, Apache Ant has to be set up to support it. The Ivy jar file (ivy-n.n.n.jar e.g. ivy-
2.2.0.jar), is located in the ‘./lib-local’ directory.

In a development environment, e.g. Eclipse, the Ivy jar has to be added to the Ant classpath.
This can be done via Window -> Preferences -> Ant -> Runtime (Classpath -> Add External
JARs).

5 Note: these libraries are downloaded using the Ivy dependency manager, and may not exist until the
relevant action is performed. See section �

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 12/39

Make sure that the development environment uses the same version of Ant as required by
the Ivy jar.

Note: Ant needs several jars to run the build script properly; these jars are kept locally in the
‘./lib-local/ant’ directory. Also, not all jars are published on Maven (e.g. DROID, FITS, etc.).
For these, a local copy is kept in ‘./lib-local/external’. The ivy-external.xml file is defined
which retrieves these jars. The main ivy.xml6 references these jars as a normal dependency.

To download the required jars for the EF, run the following ant-targets in Core:

ivy-publish-external
ivy-retrieve

The downloaded jars are stored in Core/lib/dev/, Core/lib/dist/ and Core/lib/fits/.

4.4 Build system
It is recommended to use the provided Ant build script (build.xml) to compile, build and test
the code. Ant is cross-platform and independent of the development environment.

The build.xml file relies on a build.xml.common file for certain macros used in the targets.
The Ivy targets also rely on the ivy.xml, ivy-external.xml and ivysettings.xml files. A
selection of common Ant targets is listed in Table 1. A comprehensive set can be found in
Appendix A.

6 See http://mvnrepository.com/ for Apache Ivy dependency links

http://mvnrepository.com/

Emulation Framework – System Maintenance Guide

Table 1: Selection of common Ant script targets
Ant target Comment

compile Compiles the code base

clean
Deletes output files and directories created during a build, i.e. ./build,
./src/generated/

db.create Creates and populates the internal database

db.drop Deletes the database

generated.src Generates source code from WSDL/XSD files

ivy-publish Publish the Core jar to the repository

jar Creates a JAR

javadoc Runs the javadoc, document generator for Java source code

release Creates a release package for the Core project

release.installer

Creates a release package for the Core, Emulator Archive and Software
Archive using IzPack. Requires the Emulator and Software Archive to be
available and build

test.run Prepares and runs the unit tests

4.5 Auto-generating required source files
The development environment requires several auto-generated files for it to run correctly.
These are generated by Apache CXF and placed by default in the src/generated directory.
Apache CXF uses the following input files to generate Java code:

 ./resources/external/softwarearchive/softwarearchive.wsdl

 ./resources/external/softwarearchive/PathwaySchema.xsd

 ./resources/external/softwarearchive/SoftwarePackageSchema.xsd

 ./resources/external/emulatorarchive/emulatorarchive.wsdl

 ./resources/external/emulatorarchive/EmulatorPackageSchema.xsd

The Ant target generated.src will run the necessary code to auto-generate the required files.

4.6 Setting up the internal database
The Core EF uses an internal database to store metadata information. The Subversion
repository includes a database that is configured for use, but the Ant script provides targets
to re-generate a database. The targets starting with ‘db.*’ can be used to generate this
database.

The database used is H2, a Java based database with a small footprint and an integrated
browser-based database viewer.

The viewer can be started by running the H2 library; it should automatically open a browser
with the log-in screen. See section 6 for detailed information on the database.

4.7 Building the Emulation Framework JAR
Given the Ant build script, it is very easy to build core by simply running the jar target which
will generate the compiled class files and the JAR in the build folder.

EF Release 1.1.0 (December 2011) 13/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 14/39

4.8 Creating a release package
A release package can be easily created by calling the release.installer target in the Ant
script. This will call IzPack7 which in turns uses ./resources/release/install.xml to configure
the installation package.

7 IzPack website, available at: http://izpack.org/

http://izpack.org/

Emulation Framework – System Maintenance Guide

5 Emulation Framework dependencies

The Emulation Framework relies on several components to successfully render an
environment. In this section, these dependencies and their configuration are described.

5.1 Technical registry
The EF may use technical registries to retrieve technical information about file format and
platform dependencies such as required operating system, applications, drivers, etc.

Currently, no such technical registry is operational and openly available, although a proof of
concept has been shown to work with PRONOM. As such, the Software Archive contains
simple metadata to generate Pathways.

For external registries within the EF, each technical registry has its own class file. For
example:

 eu.keep.registry.UDFRRegistry

 eu.keep.registry.PronomRegistry

The information about these registries and their metadata is stored in the Software Archive
database.

5.2 Emulator Archive
The EF uses emulators to render the environment. To organise the available emulators that
are found compatible with the EF, an Emulator Archive has been created. This archive runs
as a separate web-service, which the EF can access as a client. The server-client interaction
is achieved via web services (Apache CXF library) and uses a WSDL as an interface
definition. The Emulator Archive also defines an EmulatorPackage object using XSD. Both
files, located in Core/trunk/resources/external/emulatorarchive/, are linked to the
Emulator Archive repository:

EmulatorArchive/trunk/resources/emulatorarchive.wsdl
EmulatorArchive/trunk/resources/EmulatorPackageSchema.xsd

For details of these schemas, please see section 7.

Since the framework doesn't hold any emulators locally, it depends on the Emulator Archive
to supply these. As the emulation process is being configured, the Emulator Archive server
will be contacted for the appropriate emulator that can satisfy the selected emulation
Pathway.

The Emulator Archive is contained as a separate project in the Emulation Framework.

5.3 Software Archive
A Software Archive has been created to manage the software required by the emulators.
Similar to the Emulator Archive, the Software Archive runs as a separate web service, with
the EF as a client. The server-client interaction is achieved via web-services (Apache CXF
library). The Software Archive also defines Pathway and SoftwarePackage objects using
XSD. All three files, located in Core/trunk/resources/external/softwarearchive/, are linked
to the Software Archive repository:

EF Release 1.1.0 (December 2011) 15/39

Emulation Framework – System Maintenance Guide

SoftwareArchive/trunk/resources/softwarearchive.wsdl
SoftwareArchive/trunk/resources/SoftwarePackageSchema.xsd
SoftwareArchive/trunk/resources/PathwaySchema.xsd

For details of these schemas, please see section 7.

Since the framework doesn't hold any software images locally, it depends on the Software
Archive to supply these. As the emulation process is being configured, the Software Archive
server will be contacted for the appropriate software image that can satisfy the selected
emulation Pathway.

The Software Archive is contained as a separate project in the Emulation Framework.

EF Release 1.1.0 (December 2011) 16/39

Emulation Framework – System Maintenance Guide

6 Database management

The Core EF and the Software Archive and Emulator Archive prototypes use internal
databases to store (meta)data. The database system used is H2, a Java based database
with a small footprint and an integrated browser-based database viewer (see
http://www.h2database.com). An administrator can directly access this database (without the
Emulation Framework) by using this viewer.

Warning: manually editing the various database tables, when done incorrectly, can lead to
unexpected results, including EF malfunction. Do not edit a live production database unless
you are confident that you know what you are doing.

To start the viewer, simply run the h2-1.2.133.jar file, available in
EmulatorArchive/trunk/lib/
SoftwareArchive/trunk/lib/

or, after running Ivy, in
Core/lib/dist

or, in the installed release directory, in
 ./lib/dist

It should automatically open a browser with the log-in screen:

To connect to a database, enter the JDBC URL, user name and password (see following
sections). The ‘Test Connection’ button can be used to check if the url, user name and
password are correct.

If a connection to the database is already open, an error message will appear (as expected
for all embedded databases where only one connection can be established at a time):

EF Release 1.1.0 (December 2011) 17/39

http://www.h2database.com/

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 18/39

Once the connection is established, you can navigate between the various schemas/tables of
the database and execute SQL statements directly.

6.1 Core embedded database management
The embedded (internal) database in the Core Emulation Framework is currently used only
for maintaining the ‘Emulator Whitelist’: a table containing the IDs of emulators that are
allowed to be run. For more details, please see the [ADD].

To connect to the EF Core database, enter the full path to file

Emulation Framework – System Maintenance Guide

Core/trunk/database/h2/EF_engine.h2.db (development environment) or
./database/h2/EF_engine.h2.db (installed release directory)

for the JDBC URL. Omit the .h2.db suffix.

For user name and password, enter the values given in the Core/trunk/user.properties.

6.2 Emulator Archive database population
The Emulator Archive database holds the binaries and metadata for the available emulators.
For more details, please see the [ADD].

To connect to the Emulator Archive database, enter the full path to file
EmulatorArchive/trunk/database/db/EF_ea.h2.db (development environment) or
./ea/database/db/EF_ea.h2.db (installed release directory)

for the JDBC URL. Omit the .h2.db suffix.

For user name and password, enter the values given in the
EmulatorArchive/trunk/user.properties.

The Emulator Archive database can also be accessed via the corresponding tab in the test
GUI (only available when running the EF in ‘server’ mode). Simple database record insertion
and deletion is supported. Note that due to the size of some of the emulators, BLOBs are not
shown in the GUI, and cannot be inserted. To successfully insert these records, it is
suggested to use ‘Add Emulator’ wizard in the test GUI (see section 3.3.1 in the System
[SUG]).

Although the Emulator Archive contains a number of default emulators, it can be desirable to
insert other emulators. The preferred method to do this is by using the ‘Add Emulator’ wizard
in the test GUI (see section 3.3.1 in the [SUG]). However, it is also possible to do it directly
using the H2 browser interface. To successfully do this, a number of parameters relating to
the emulator must be set correctly. The following example demonstrates this process

1. Add hardware
Add a new hardware id and name to the HARDWARE table, if necessary. Note: This
hardware must also be available in the Software Archive

2. Add image format
Add a new image format id and name to the IMAGEFORMATS table, if necessary

3. Add emulator
Add a new emulator id, name, version, etc. to the EMULATORS table. See the
Architectural Design Document for a full description of the columns

4. Link the emulator to the hardware
Add the emulator id and hardware id link in the EMUS_HARDWARE table, indicating
the emulator runs on the specified hardware

5. Link the emulator to the image format
Add the emulator id and image format id link in the EMUS_IMAGEFORMATS table,
indicating the emulator runs on the specified hardware. Note: the emulator may
support more than one image format.

EF Release 1.1.0 (December 2011) 19/39

Emulation Framework – System Maintenance Guide

6.3 Software Archive database population
The Software Archive database holds the binaries and metadata for the available software
images. For more details, please see the [ADD].

To connect to the Emulator Archive database, enter the full path to file
SoftwareArchive/trunk/database/db/EF_swa.h2.db (development environment) or
./swa/database/db/EF_swa.h2.db (installed release directory)

for the JDBC URL. Omit the .h2.db suffix.

For user name and password, enter the values given in the
SoftwareArchive/trunk/user.properties.

The Emulator Archive database can also be accessed via the corresponding tab in the test
GUI (only available when running the EF in ‘server’ mode). Simple database record insertion
and deletion is supported. Note that due to the size of some of the software images, BLOBs
are not shown in the GUI, and cannot be inserted. To successfully insert these records, it is
suggested to use ‘Add Software wizard in the test GUI (see section 3.3.2 in the [SUG]).

Although the Software Archive contains a number of default software images, it can be
desirable to insert others. To successfully do this, a number of parameters relating to the
software image must be set correctly, plus a supporting pathway must be created. The
following example demonstrates this process

1. Add file format
Add a new file format id and name to the FILEFORMATS table, if necessary. Note:
This file format must also be available in the Core database.

2. Add application
Add a new application id and name to the APPS table, if necessary.

3. Add operating system
Add a new operating system id and name to the OP_SYS table, if necessary.

4. Add platform
Add a new platform id and name to the PLATFORMS table, if necessary.

5. Add an image format
Add a new image format id and name to the IMAGEFORMATS table, if necessary.
This image format must also be available in the EA database.

6. Add a software image
Add a software image id, name, image format id and platform id to the IMAGES table.
Add the image file to the IMAGEBLOBS table.

7. Create the pathway

a. Link the file format to an application, operating system and/or platform
Depending on the pathway, a file format must either be run in an application
(e.g. a WordPerfect file runs in the WordPerfect application), operating system
(e.g. an ISO file is run directly by Windows) or a hardware platform (e.g. a C64
file runs directly on the Commodore 64). In the appropriate table
(FILEFORMATS_APPS, FILEFORMATS_OPSYS,
FILEFORMATS_PLATFORM), link the file format to the appropriate level in
the pathway.

b. Link the application to an operating system and software image
An application requires an operating system to run, and the software image
needs to know what applications are contained in it. The appropriate links

EF Release 1.1.0 (December 2011) 20/39

Emulation Framework – System Maintenance Guide

between the application and operating system/software image need to be
made in the APPS_OPSYS/APPS_IMAGES tables, respectively.

c. Link the operating system to a platform and software image
An operating system runs on a platform, and the software image needs to
know what operating systems are contained in it. The appropriate links
between the operating system and platform/software image need to be made
in the OPSYS_PLATFORMS/OPSYS_IMAGES tables, respectively.

8. Check the pathway is correctly generated
Using the PATHWAYS view, the pathway generated in step 7 should be visible. This
view contains all pathways, be they file format to platform; file format to operating
system to platform; or file format to application to operating system to platform. For
those pathways that do not have all the parts of the software stack, the appropriate
columns will be null.

Example of file formats to platform pathways:

Example of file formats to operating system to platform pathways:

EF Release 1.1.0 (December 2011) 21/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 22/39

Example of file formats to applications to operating system to platform pathways:

Emulation Framework – System Maintenance Guide

7 Data model and schemas

7.1 Emulator Package
Schema: EmulatorPackageSchema.xsd

Each EF-compliant emulator is transferred from the Emulator Archive to a receiver in an
Emulator Package, schematically shown in Figure 2.

An Emulator Package contains a package element describing the package itself with an id,
version and type field, as well as a package name.

The emulator element describes the emulator software and includes some descriptive fields
(such as name, version, and description) and technical elements such as a list of hardware
that the emulator can emulate, a list of software imageFormat (such as FAT12, FAT32, D64,
etc.) that the emulator can read.

The emulator.executable element contains information about the executable itself. The type
field defines the type of executable (such as jar for java-based emulators, exe for Windows
native executables and ELF for Linux executables); the name field contains the executable
file name. The location field contains the local path within the container file from where the
binary will run.

Finally, the emuLanguage_list element consists of a list of language codes referenced to by
the emulators.

EF Release 1.1.0 (December 2011) 23/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 24/39

Figure 2: Emulator Package schema

Note: the version number of the package element is different from the version number of the
emulator. The latter corresponds to the actual emulator software version number whereas
the package version only concerns the package itself which can then be used to update
existing packages with newer package version if necessary.

An example of metadata that corresponds to the schema above is as follows:

<ea:emulatorPackage xmlns:ea="http://emulatorarchive.keep-project.eu/EmulatorPackage">

<package id="1" version="1" type="zip">

<name>Dioscuri_042.zip</name>

</package>

<emulator>

<name>Dioscuri</name>

Emulation Framework – System Maintenance Guide

<version>0.4.2</version>

<languageId>en</languageId>

<description>Dioscuri, the modular emulator</description>

<hardware>x86</hardware>

<imageFormat>FAT12</imageFormat>

<imageFormat>FAT16</imageFormat>

<executable type="jar">

<name>Dioscuri-0.4.2.jar</name>

<location>.</location>

</executable>

</emulator>

</ea:emulatorPackage>

7.2 Emulator Archive web services
Schema: emulatorarchive.wsdl

The Emulator Archive offers several web services to obtain data from the database. The
externally available services are shown in Figure 3, along with their parameters.

EF Release 1.1.0 (December 2011) 25/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 26/39

Figure 3: Emulator Archive web services

The following table explains these functions in more detail:

Function Input Output Explanation

DownloadEmulator Emulator
Package
ID

Binary Stream
(File)

Downloads the emulator
binary from the database,
given a valid emulator ID

GetEmulatorPackage Emulator
Package
ID

Emulator Package Retrieves the emulator
metadata (not including the
binary) given a valid
emulator ID

GetEmulatorPackageList Dummy
number

All Emulator
Packages

Retrieves the emulator
metadata (not including the
binary) for all packages in
the database.
Note that a dummy input
must be supplied

Emulation Framework – System Maintenance Guide

GetSupportedHardware Dummy
number

All hardware IDs Retrieves all hardware IDs
in the database
Note that a dummy input
must be supplied

GetEmusByHardware Hardware
ID

Emulator Packages Retrieves the emulator
metadata (not including the
binary) for all packages that
support the given hardware
ID.

GetLanguageList Dummy
number

All referenced
languages

Returns a list of languages
that are used by one or
more emulators

7.3 Dependency (pathway) schema
Schema: PathwaySchema.xsd

The environment that can render digital objects, consisting of the digital object file format,
and hardware platform and possibly an application and/or operating system, is called a
Pathway. The Software Archive defines a Pathway in an XSD schema, which is
schematically shown in Figure 4 below:

EF Release 1.1.0 (December 2011) 27/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 28/39

Figure 4: Pathway schema

Emulation Framework – System Maintenance Guide

Each of the four elements has a mandatory ID, name and (except for the hardware platform)
version. Other optional elements include a description, creator, reference, etc.

Although a Pathway is made up of four elements (digital object format, application, operating
system and hardware platform), only the object format and platform are mandatory. The
application and operating system may not need to be defined for a valid Pathway.

The Pathway schema also defines a registryType element, which describes metadata for
Technical Registries, and a efFormat element, which describes an EF fileformat:

Figure 5: Pathway schema: registryType and efFormat elements

7.4 Software Package schema
Schema: SoftwarePackageSchema.xsd

The software required to render digital objects is transferred from the Software Archive to a
receiver in a Software Package, schematically shown in Figure 5.

The Software Package contains a software image which consists of one or more operating
systems containing one or more applications. The descriptive metadata has a Software
Package id (attribute), and format and description elements. The format element
corresponds to the imageFormat element in the Emulator Package schema.

Each operating system (os element) and application (app element) is defined using the
Pathway operating system and application type, respectively.

EF Release 1.1.0 (December 2011) 29/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 30/39

Figure 5: Software Package Schema

Emulation Framework – System Maintenance Guide

An example of metadata that corresponds to the schema above is as follows:

<softwarePackage id="IMG-1000">

<description>MS-DOS 5.00 Operating System + basic text editor EDIT 1.0</description>

<format>FAT32</format>

<pw:os id="OPS-2000">

 <name>MSDOS</name>

 <version>5.00</version>

</pw:os>

<pw:app id="APP-3000">

 <name>EDIT</name>

 <version>1.0</version>

</pw:app>

<pw:app id="APP-3001">

 <name>Q-BASIC</name>

 <version>2.1</version>

</pw:app>

</softwarePackage>

7.5 Software Archive web services
Schema: softwarearchive.wsdl

The Software Archive offers several web services to obtain data from the database. The
externally available services are shown in Figure 6, along with their parameters.

EF Release 1.1.0 (December 2011) 31/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 32/39

Figure 6: Software Archive web services

Emulation Framework – System Maintenance Guide

The following table explains these functions in more detail:

Function Input Output Explanation

GetSoftwarePackageInfo Software
Package ID

Software Package Retrieves the software
metadata (not including
the binary) given a valid
software ID

GetAllSoftwarePackagesInfo Dummy
String

All Software
Packages

Retrieves the software
metadata (not including
the binary) for all
packages in the database.
Note that a dummy input
must be supplied

GetPathwaysByFileFormat File Format Pathways Retrieves the viable
Pathways for rendering a
file given the File Format

GetSoftwarePackagesByPathway Pathway Software
Packages

Retrieves the software
metadata (not including
the binary) for all
packages that can satisfy
the given Pathway.

DownloadSoftware Software
Package ID

Binary Stream
(File)

Downloads the software
image from the database,
given a valid Software
Package ID

GetLanguageList Dummy
String

All referenced
languages

Returns a list of languages
that are used by one or
more operating systems or
applications.

GetRegistries Dummy
number

All registered
registries

Returns metadata for the
registered Technical
Registries

UpdateRegistries List of
Registries

Updates registries
in the database.

Updates metadata for
Technical Registries. The
registries must already
exist in the database.

SetRegistries List of
Registries

Inserts registries in
the database

Insert metadata for
Technical Registries. The
old metadata will be
overwritten.

GetFormatDataOnId PCR
Fromat ID,
database
view name

Retrieves the EF
fileformat ID and
fileformat name
from the database
given a PCR ID

Retrieves the fileformat ID
and name used internally
by the EF, given a PCR
ID.

EF Release 1.1.0 (December 2011) 33/39

Emulation Framework – System Maintenance Guide

8 Quick Guide to running the Emulation Framework

Currently the default interface to run the Emulation Framework is the test GUI, part of the
Emulation Framework. The test GUI is described in detail in the [SUG].

An alternative, command-line interface is also available, and is generated as part of the
release.installer target. To select the command-line interface, rather than the test GUI, the
main class in the EFCore.jar manifest must be changed from eu.keep.gui.GUI to
eu.keep.core.EFCliAutoComp. The Ant target jar can be changed to do this automatically.

Before running the Emulation Framework, make sure that the required Software Archive and
Emulator Archive releases are available (run the respective release targets in the Software
Archive and Emulator Archive build files).

Command Line Interface

The Command Line Interface, based on BeanShell, is provided as part of the Emulation
Framework Core so that it can be debugged without requiring an external interface such as a
front-end GUI.

This built-in shell offers direct access to the public API (see section 9) by creating an
instance m of the Kernel object that would normally be used by the host program. The auto-
completion (using the tab key) of methods name and file/directory paths makes for quicker
and easier usability.

Basic workflow

Here is a list of the basic commands:

- Digital object characterisation:

 m.characterise(new File(“/my/path/to/file/myFile.xyz”))

- Start an emulation process from a digital object with no metadata

 m.start (new File(“./testData/digitalObjects/text.txt”))

- Start an emulation process from a digital object with metadata included

 m.start (new File(“./testData/digitalObjects/text.txt”), new File(“./testData/digitalObjects/text.txt.xml”))

EF Release 1.1.0 (December 2011) 34/39

Emulation Framework – System Maintenance Guide

9 Public API

The API is defined by the interface definition in CoreEngineModel.java, which is
implemented by the Kernel.java class.

The following sections show how to use the Command Line interface to achieve different
results. For instructions on how to use the GUI, please refer to [SUG].

9.1 Running an emulation process manually
An emulation process can run manually, where all the steps normally done automatically
when using the start() methods can run sequentially. This allows the user to manually set the
options.

 Characterise a file

The characterisation process will return a list of Format object which can, in turn, be queried for more
detailed information about the identified format.

 m.characterise(new File(“/my/path/to/file/myFile.xyz”))

m.getTechMetadata(new File(“/my/path/to/file/myFile.xyz”))

m. getFileInfo(new File(“/my/path/to/file/myFile.xyz”))

 Retrieve Pathways for a given file format

Once a format has been selected, it is necessary to retrieve a list of Pathways that can render the
format.

 List<Format> formats = m.characterise(new File(“/my/path/to/file/myFile.xyz”))

List<Pathway> Pathways = m.getPathways(formats.get(0))

 m.isPathwaySatisfiable(Pathways.get(0))

The list of Pathways thus retrieved only represents a list of potential/theoretical Pathways but doesn't
have any knowledge of the available software and emulators that are available locally or via an archive.
It is therefore important to filter this list with only satisfiable Pathways, i.e. Pathways can actually be
rendered by the Emulation Framework. For this, the method isPathwaySatisfiable can be used to verify
the satisfiability of a given Pathway by checking the availability of the required emulator and software
images.

Similarly, an automatic selection of a valid Pathway can be achieved with a call to the method
autoSelectPathway which returns the first satisfiable Pathway.

 Set the list of allowed emulators

Before selecting an emulator, the list containing the emulators which are allowed to be used must be
populated. This can be done as follows:

 m.getWhitelistedEmus()

m.whiteListEmulator(1)

EF Release 1.1.0 (December 2011) 35/39

Emulation Framework – System Maintenance Guide

To remove an emulator from the allowed list, the method unListEmulator can be used

 Retrieve emulator/software images for a given Pathway

Once a Pathway has been selected, a list of compatible emulators and software images must be
produced.

To do so, a couple of method calls are provided.

First a list of emulator and a list of software image must be retrieved from the Pathway:

 m.getEmulatorsByPathway(Pathways.get(0))

m.getSoftwareByPathway(Pathways.get(0))

A matching between the list of emulators and software images has to be performed as certain emulators
may not be compatible with certain image formats. A map of emulators with their respective list of
compatible software images can be retrieved as follows.

 m.matchEmulatorWithSoftware(Pathways.get(0))

If an automatic selection of a specific emulator and software is required, the methods
autoSelectEmulator and autoSelectSoftwareImage can be used.

 Configure and run the emulation process

Once an emulator and software image have been selected, the emulation process needs to be
configured and started. This is achieved as follows:

 List<EmulatorPackage> emuList = m.getEmuListFromArchive()

List<SotfwarePackage> swList = m.getSoftwareListFromArchive()

 Integer i = m.prepareConfiguration(new File(“/my/path/to/file/myFile.xyz”), emuList.get(0), swList.get(0),
Pathways.get(0))

m.runEmulationProcess(i)

Note: the above example picks a random emulator and software; this is not recommended but shown for
illustrative purposes. It is suggested to use the previously shown emulator/software Pathway selection.

It is then possible to modify the default option set for the chosen emulator by retrieving its list of options,
modify them and finally reset them back, before actually building the configuration, by using the methods
getEmuOptions and setEmuOptions

EF Release 1.1.0 (December 2011) 36/39

Emulation Framework – System Maintenance Guide

10 Appendix A: Ant targets

Table 2: Complete list of external Ant targets
Ant target Comment

compile Compiles the code base

checkstyle Runs checkstyle, the static code analysis tool for java source code

clean
Deletes output files and directories created during a build, i.e. ./build,
./src/generated/

copy.resources Copies the required resources (property files, schemas, etc.) to the classpath

db.create Creates and populates the internal database

db.drop Deletes the database

db.reset Resets the database (calls db.drop and db.create consecutively)

generated.src Generates source code from WSDL/XSD files

ivy-publish Publish the EFKernel jar to the repository

ivy-publish-external Publish the external jars to the repository

ivy-report Generates a report detailing all the dependencies of the module

ivy-resolve Resolves transitive dependencies

ivy-retrieve Retrieve dependencies into cache

jar Creates a JAR

javadoc Runs the javadoc, document generator for Java source code

release Creates a release package for the Core project

release.installer

Creates a release package for the Core, Emulator Archive and Software
Archive using IzPack. Requires the Emulator and Software Archive to be
available and build

svnstat Runs svnstat, a tool that generates statistic on subversion usage

test.compile Compiles the unit tests source code

test.copy.resources
Copies the required test resources (property files, schemas, etc.) to the
classpath

test.db.create Creates the test database

test.db.drop Deletes the test database

test.db.reset Resets the test database (calls test.db.drop and test.db.create consecutively)

test.report Creates the junit html report

test.run Prepares and runs the unit tests

EF Release 1.1.0 (December 2011) 37/39

Emulation Framework – System Maintenance Guide

11 Appendix B: language codes

Table 3: Complete list of language codes
Language
code

Language name Language
code

Language name Language
code

Language name

aa Afar hy Armenian or Oriya

ab Abkhazian hz Herero os Ossetian

ae Avestan ia Interlingua
(International
Auxiliary Language
Association)

pa Punjabi

af Afrikaans id Indonesian pi Pali

ak Akan ie Occidental pl Polish

am Amharic ig Igbo ps Pashto

an Aragonese ii Sichuan Yi pt Portuguese

ar Arabic ik Inupiaq qu Quechua

as Assamese io Ido rm Romansh

av Avaric is Icelandic rn Rundi

ay Aymara it Italian ro Romanian

az Azerbaijani iu Inuktitut ru Russian

ba Bashkir ja Japanese rw Kinyarwanda

be Belarusian jv Javanese sa Sanskrit

bg Bulgarian ka Georgian sc Sardinian

bh Bihari languages kg Kongo sd Sindhi

bi Bislama ki Kikuyu se Northern Sami

bm Bambara kj Kwanyama sg Sango

bn Bengali kk Kazakh si Sinhala

bo Tibetan kl Kalaallisut sk Slovak

br Breton km Central Khmer sl Slovenian

bs Bosnian kn Kannada sm Samoan

ca Catalan ko Korean sn Shona

ce Chechen kr Kanuri so Somali

ch Chamorro ks Kashmiri sq Albanian

co Corsican ku Kurdish sr Serbian

cr Cree kv Komi ss Swati

cs Czech kw Cornish st Sotho, Southern

cu Church Slavic ky Kyrgyz su Sundanese

cv Chuvash la Latin sv Swedish

cy Welsh lb Letzeburgesch sw Swahili

da Danish lg Ganda ta Tamil

de Deutsch li Limburger te Telugu

dv Dhivehi ln Lingala tg Tajik

EF Release 1.1.0 (December 2011) 38/39

Emulation Framework – System Maintenance Guide

EF Release 1.1.0 (December 2011) 39/39

dz Dzongkha lo Lao th Thai

ee Ewe lt Lithuanian ti Tigrinya

el Greek, Modern
(1453-)

lu Luba-Katanga tk Turkmen

en English lv Latvian tl Tagalog

eo Esperanto mg Malagasy tn Tswana

es Spanish mh Marshallese to Tonga (Tonga
Islands)

et Estonian mi Maori tr Turkish

eu Basque mk Macedonian ts Tsonga

fa Persian ml Malayalam tt Tatar

ff Fulah mn Mongolian tw Twi

fi Finnish mr Marathi ty Tahitian

fj Fijian ms Malay ug Uyghur

fo Faroese mt Maltese uk Ukrainian

fr French my Burmese ur Urdu

fy Western Frisian na Nauru uz Uzbek

ga Irish nb Norwegian Bokmål ve Venda

gd Gaelic nd North Ndebele vi Vietnamese

gl Galician ne Nepali vo Volapük

gn Guarani ng Ndonga wa Walloon

gu Gujarati nl Nederlands wo Wolof

gv Manx nn Norwegian Nynorsk xh Xhosa

ha Hausa no Norwegian yi Yiddish

he Hebrew nr South Ndebele yo Yoruba

hi Hindi nv Navaho za Zhuang

ho Hiri Motu ny Chichewa zh Chinese

hr Croatian oc Occitan (post 1500) zu Zulu

ht Haitian oj Ojibwa

hu Hungarian om Oromo

	Executive Summary
	Table of Contents
	1 Introduction
	1.1 Purpose and scope
	1.2 Context of this Issue
	1.3 About the KEEP project
	1.4 About the software in this release

	2 System Context and Interfaces
	2.1 Overview and Context

	3 Configuration
	3.1 Core configuration
	3.2 Emulator Archive configuration
	3.3 Software Archive configuration

	4 The Development Environment
	4.1 Source files
	4.2 Example development setup
	4.3 Managing dependencies
	4.4 Build system
	4.5 Auto-generating required source files
	4.6 Setting up the internal database
	4.7 Building the Emulation Framework JAR
	4.8 Creating a release package

	5 Emulation Framework dependencies
	5.1 Technical registry
	5.2 Emulator Archive
	5.3 Software Archive

	6 Database management
	6.1 Core embedded database management
	6.2 Emulator Archive database population
	6.3 Software Archive database population

	7 Data model and schemas
	7.1 Emulator Package
	7.2 Emulator Archive web services
	7.3 Dependency (pathway) schema
	7.4 Software Package schema
	7.5 Software Archive web services

	8 Quick Guide to running the Emulation Framework
	9 Public API
	9.1 Running an emulation process manually

	10 Appendix A: Ant targets
	11 Appendix B: language codes

