

Keeping Emulation Environments Portable
FP7-ICT-231954

Test description and results document for Emulation
Framework

Deliverable number D2.4

Nature

Report

Dissemination level

PU (public)

Delivery date

Due: M35 (December 2011)
Actual: M36 (January 2012)

Status

Final

Work package number

WP2

Lead beneficiary

KB

Author(s)

Bart Kiers (KB)
Jeffrey van der Hoeven (KB)

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 2/38

Document history

Revisions

Version Date Author Changes

0.1 21-04-2011 Bart Kiers (KB) Initial version

0.2 10-12-2011 Bart Kiers (KB) Added test results

0.3 23-12-2011 Bart Kiers (KB) Added notes from Jeffrey
about feedback KEEP
workshops. Made it review
ready

0.4 30-12-2011 Bart Kiers (KB) Added review comments from
Winfried Bergmeyer

0.5 05-01-2012 Bart Kiers (KB) Added review comments from
Marcus Dindorf

0.6 10-01-2012 Jeffrey van der Hoeven (KB) Adjusted template to standard
deliverable output

1.0 13-01-2012 Jeffrey van der Hoeven (KB) Finalised document

1.1 17-01-2012 Jeffrey van der Hoeven (KB) Changed wording about KVM

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 3/38

Reviews

Date Name Result

27-12-2011 Winfried Bergmeyer (CSM) Approved with minor changes

30-12-2011 Marcus Dindorf (DNB) Approved with major changes

Signature/Approval

Approved by (signature) Date

Accepted by at European Commission (signature) Date

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 4/38

Executive Summary
This document describes how tests with the Emulation Framework (EF) version 1.0.0 were
performed and the results of those tests. These tests were performed to:

• see if all mandatory requirements are accomplished;

• find bugs in EF release 1.0.0;

• list desired future enhancements.

Out of scope are the functionality of the emulators available in the EF and the Graphical
User Interface (GUI) of the EF. The focus is on the functionality of the Core EF, Software
archive and Emulator archive.

A set of tests were performed to test various aspects of the EF:

• Data integrity testing – test against corruptness of data used by the EF;

• Functional testing – test against the defined mandatory requirements by the project;

• Usability testing – collect feedback from end-users at workshops;

• Performance testing – test responsiveness of the EF;

• Stress- and volume testing – test robustness of the EF;

• Configuration testing – test behaviour when wrong parameters are set;

• Installation testing – test the software installation process.

 The EF withstood all performed tests successfully. In short, the EF proved to:

√ be reliable as it does not change the bytes of digital objects or software;

√ meet all but one of the mandatory requirements defined by the project;

√ satisfy the user’s expectations during the workshops and user tests;

√ have good performance in interaction with the SWA and EA;

√ perform well under difficult circumstances such as low memory or many requests;

√ behave well when wrong configuration entries are done;

√ come with a solid installer.

The EF did not fully meet the requirement on the ability to run at least one KVM-based
emulator. This will be solved before the end of the KEEP. Apart from that, no major
shortcomings were identified.

Several useful recommendations were given during the workshops and tests:

• support for complex objects (e.g. websites, multimedia applications) by the EF;

• add language preference for emulated environment;

• give extra support to the user about the emulated environment;

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 5/38

• auto select the host platform (native MS Windows/Linux/MacOS);

• define separated admin and user roles;

• integrate emulator from SIMH emulation project into EF;

• start emulators and software without selecting a digital file first;

• add original software documentation and external references (web addresses) to
support to the user;

• error messages are not always clear and should be improved;

• double-click on file to auto run an emulated environment;

• identification of files is not always correct, in such cases, letting the end-user
provide a file format would be helpful;

• easier addition of software packages and emulators in the SWA and EA;

• possibility, or a manual, that explains how to integrate the EF with an existing
repository.

The recently released version 1.1.0 of the EF already incorporates many of the
recommended improvements to the EF. The final version of the KEEP EF (2.0.0) is expected
to cover even more.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 6/38

List of Related Documents

User Requirements Document http://www.keep-
project.eu/ezpub2/index.php?/eng/content/downlo
ad/7918/39623/file/KEEP_WP2_D2.2_complete.p
df

Architectural Design Document http://emuframework.sourceforge.net/docs/Archite
ctural-Design-Document_1.1.pdf

Emulation Framework User Guide http://emuframework.sourceforge.net/docs/System
-User-Guide_1.1.pdf

Abbreviations

BLOB Binary Large Object

EA Emulator Archive

EE Enterprise Edition

EF Emulation Framework

GUI Graphical User Interface

KB National Library of the Netherlands

MB Megabyte

NA National Archives of the Netherlands

OS Operating System

RAM Random-Access Memory

SWA Software Archive

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 7/38

Table of Contents

Executive Summary... 4

Table of Contents... 7

1. Introduction ... 9
1.1. Objectives and scope of the tests... 9
1.2. About the Emulation Framework .. 9
1.3. About the KEEP project .. 11
1.4. Outline of this document ... 11

2. Test plan .. 12
2.1. Objectives and scope ... 12
2.2. Test Environment ... 13
2.3. Test Techniques and Types ... 14

2.3.1. Data Integrity Testing .. 14
2.3.2. Functional Testing ... 15
2.3.3. Usability Testing .. 15
2.3.4. Performance Testing ... 16
2.3.5. Stress- and Volume Testing .. 16
2.3.6. Configuration Testing .. 17
2.3.7. Installation Testing .. 17

3. Test results .. 18
3.1. Data Integrity Test Results ... 18

3.1.1. Rendered digital object.. 18
3.1.2. Emulator and Software package ... 18
3.1.3. Conclusion... 19

3.2. Functional Test Results .. 19
3.2.1. Mandatory requirements.. 19
3.2.2. Conclusion... 21

3.3. Usability Test Results ... 22
3.3.1. Results from workshops and tests... 22
3.3.2. Conclusion... 23

3.4. Performance Test Results .. 24
3.4.1. Setup ... 24
3.4.2. Results .. 25
3.4.3. Conclusion... 25

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 8/38

3.5. Stress- and Volume Test Results ... 25
3.5.1. Large amount of requests ... 26
3.5.2. Low memory.. 26
3.5.3. Conclusion... 26

3.6. Configuration Test Results ... 26
3.6.1. Results .. 26
3.6.2. Conclusion... 27

3.7. Installation Test Results.. 27
3.7.1. Installation without sufficient rights .. 27
3.7.2. Installation while another installation is running .. 28
3.7.3. Installation on a USB stick without sufficient space... 28
3.7.4. A valid installation.. 28
3.7.5. Conclusion... 28

4. Conclusions and recommendations.. 29

Appendix A: Jmeter test profile .. 30

Appendix B: list of EF 1.0.0 system functions (methods) .. 36

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 9/38

1. Introduction
This document describes how tests with the Emulation Framework version 1.0.0 were
performed and the results of those tests. It focuses on the functionality of the framework and
its components, rather than on the individual emulators or end-user interaction.

1.1. Objectives and scope of the tests
In May 2011, the first official public release of the EF became available1. Before software
development started, several mandatory and optional user requirements were defined2. To
make sure the EF meets these requirements, several tests were performed. The main
objectives for doing the tests were:

• see if all mandatory requirements are accomplished;

• find bugs in EF release 1.0.0;

• list desired future enhancements.

This document can also be used as a template for tests with future releases of the EF.

Out of scope are the functionality of the emulators available in the EF and the Graphical
User Interface (GUI) of the EF. The focus is on the functionality of the Core EF, Software
archive and Emulator archive.

1.2. About the Emulation Framework
The Emulation Framework (EF) allows you to render digital files and computer programmes
in their native environment. This offers you the potential to view these files in their intended
‘look and feel’, independent from current state of the art computer systems. The spectrum of
potential computer platforms and applications that can be supported is practically unlimited.

Release 1.0.0 of the EF supports emulation of the x86, Commodore 64, Amiga and Amstrad
CPC computer platforms. Emulation is done by using existing (open source) emulators which
are carefully selected on their capability to mimic the functionality of these platforms.

The EF 1.0.0 consists of three parts:

1. Core Emulation Framework

2. Software Archive

3. Emulator Archive

The Core EF is the technical heart of the system, performing the workflow steps as
explained before (i.e. automatic identification of file formats, selecting the required software
and automatically configuring the emulation environment). For selecting software and an
emulator, the Core EF interacts with the Software Archive and the Emulator Archive.

The Software Archive is a separate web service that contains the software (applications
and operating systems) available for the EF. The download package comes with the
following open source operating systems:

• FreeDOS – an open source MS DOS look-a-like operating system

1 Emulation Framework website, available at: http://emuframework.sf.net
2 Requirements and design documents for services and architecture of emulation framework, D2.2a, April 2010.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 10/38

• Damn Small Linux – a small Linux kernel with limited functionality

The Emulator Archive is a separate web service that contains the emulators available for
the EF. The download package comes with the following open source emulators:

1. Dioscuri – x86 Java-based emulator capable of running MS DOS and Linux.

2. QEMU – x86 capable of running MS Windows and Linux.

3. VICE – Commodore 64 emulator

4. UAE – Amiga emulator

5. Java CPC – Amstrad emulator

6. BeebEm – BBC Micro emulator

The Core EF, Software Archive and Emulator Archive are developed by Tessella3 with
support from the National Library of the Netherlands (Koninklijke Bibliotheek, KB)4.

The EF is actually an automated workflow for running emulators with predefined content. It
does this by following several steps. The following illustration shows which steps are taken to
come from digital file to emulated computer environment.

The workflow consists of the following steps:

1. Characterise object – based on a given file (selected by a user) the EF identifies
which file format it is using the tool FITS;

2. Determine environment – looks up which software and hardware is required to run
the file;

3. Check available environment – matches the required environment with the best
environment available in the EF;

4. Configure software – retrieves selected software from the software archive and wraps
the given file into a disk image;

3 Tessella, website available at: http://www.tessella.com
4 National Library of the Netherlands, website available at: http://www.kb.nl

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 11/38

5. Configure emulator – retrieves selected emulator from the emulator archive and
configures it using emulator specific templates. Attaches software and disk image
containing the file;

6. Render object – launch the prepared emulation environment.

1.3. About the KEEP project
KEEP (Keeping Emulation Environments Portable) is an international research project co-
funded by the European Union 7th Framework Programme. It does research into an
emulation-based preservation strategy and develops several tools to support that. The
consortium consists of eight organisations representing a wide range of stakeholders in
Europe: cultural heritage institutes, research institutes, commercial ICT partners and the
gaming industry. The project has a duration of three years and ends in February 2012.

More information can be found on the KEEP website5.

1.4. Outline of this document
Chapter 2 describes the Test Plan which was used to gather all information necessary to
plan and control the test effort for testing the EF. Chapter 3 lists the results of these tests.
Chapter 4 summarises the conclusions of the individual tests and offers a couple of
recommendations for future developments of the EF.

This document contains a short glossary describing uncommon terms used throughout this
document and two appendices: JMeter test profile that can be used to replicate stress-,
volume- and performance tests, and an overview of all system functions (methods) of the EF.

5 KEEP project website, available at: : http://www.keep-project.eu

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 12/38

2. Test plan
This chapter lists all information that was needed to plan and control the tests with the EF.
Tests were performed against the public software release of the EF in version 1.0.0 6.

It describes the approach to testing the software, and was the top-level plan used to direct
the test effort, and will be, in future tests.

2.1. Objectives and scope
The Test Plan for the EF covers the following objectives:

• identify the items targeted by the tests;

• identify the motivation for, and ideas behind, the covered test areas;

• outline the testing approach;

• identify the required resources;

• list the elements involved in the test activities;

• test the presence of all mandatory requirements.

Subject of the tests are:

• Core functionality of the EF;

• Software Archive (SWA henceforth);

• Emulator Archive (EA henceforth).

Note: the Graphical User Interface (GUI) is not subject of the tests as this is part of WP3.
Neither are the emulators managed by the EF. Instead, the focus is on the functional
behaviour of the core components of the EF itself.

The relation between the core functionality and its external interfaces is given in the following
architectural diagram. For more explanation, please read the Architectural Design Document7
(D2.2b).

6 http://sourceforge.net/projects/emuframework/files/Release_1.0.0/
7 Requirements and design documents for services and architecture of emulation framework, D2.2b,
April 2010.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 13/38

2.2. Test Environment
The following software is used in the setup for the tests:

• KEEP Emulation Framework version 1.0.0;

• Java SE8 version 1.6;

• Java EE 5 web services;

• H29 database;

• Microsoft Windows XP (client OS);

• Ubuntu 11.10 (client OS);

• Microsoft Windows 2008 Server (server OS) configured as a virtual server running in a
VMware server cluster consisting of four quad-core blade servers;

Test utilities:

• Apache JMeter10

8 http://www.h2database.com
9 http://www.oracle.com/technetwork/java/javase
10 Apache JMeter, software available at: http://jmeter.apache.org/

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 14/38

• WinImage 8.111

• JUnit test framework12

• Apache Ant13

The following hardware is used in the setup for the tests:

• Client machine: HP Compaq, Intel Core2 Quad Q9400 2.66 MHz, 4 GB RAM, NVIDIA
Quadro NVS 290.

• Server machine: virtual server running in a VMware server cluster consisting of four
quad-core HP blade servers.

• Network: 1 Gbit Ethernet (LAN) connection.

2.3. Test Techniques and Types
The test plan entails different types of testing:

• Data integrity testing

• Functional testing

• Usability testing

• Performance testing

• Stress- and volume testing

• Configuration testing

• Installation testing

Each of these tests are described in detail in the following sections.

2.3.1. Data Integrity Testing
Data integrity tests are performed to ensure files rendered by the EF are not manipulated in
any way. It is also done to ensure that binary data stored in the H2 database, like emulators
and software packages, do not differ after being extracted from the database.

Objective Verify that no data corruption takes place after rendering a
digital object, or extracting software from the database.

Tool(s) used - Windows XP’s comp14 command which compares the
contents of two (or more) files byte-by-byte

- H2 database

- WinImage, a disk imaging tool

11 WinImage, software available at: http://www.winimage.com/
12 JUnit test framework, software available at: http://www.junit.org/
13 Apache Ant, software available at: http://ant.apache.org/

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 15/38

Success criteria A copy of the rendered file is byte-by-byte identically after
once successfully rendered within the EF. An emulator, or
software image, is byte-by-byte identically after once
successfully extracted from the H2 database within the EF.

2.3.2. Functional Testing
Functional tests are performed to verify all functional requirements are successfully met.
This will be accomplished through black-box testing against the defined requirements of the
EF as documented in deliverable D2.2a. All functions will be tested using unit tests.

Unit testing is a method by which individual units of source code are tested to determine if
they are fit for use. A unit is the smallest testable part of an application15.

Objective Verify all system functional requirements are met.

Tool(s) used JUnit, Apache Ant

Success criteria All of the mandatory requirements are implemented and
successfully passed their unit tests.

2.3.3. Usability Testing
Usability tests are performed to verify the end-user’s expectations of the EF’s functionality
and to identify features that would be beneficial to incorporate in the EF. It also verifies that
all mandatory functionality in the EF is able to be operated in terms of Human Machine
Interface (HMI) best-practices through a test GUI. However, the GUI itself is not part of this
test.

Objective Verify that the EF fulfils the end-user’s expectations which
were collected as user feedback.

Tool(s) used Hold workshops and collect feedback from end-users.

Test at the National Archives of the Netherlands with a couple
of digital objects from their collection.

Test at the National Library of the Netherlands (KB) with a
couple of digital objects from their collection.

14 http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/comp.mspx
15 Definition of unit testing, by Wikipedia.org, available at: http://en.wikipedia.org/wiki/Unit_testing

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 16/38

Success criteria All end-user expectations were successfully met.

2.3.4. Performance Testing
In the performance tests, response times, transaction rates, and other time-sensitive
requirements are measured and evaluated. The goal of these tests is to verify if performance
requirements have been achieved. Performance profiling is implemented and executed to
profile and tune target-of-test's performance behaviours as a function of conditions such as
workload or hardware configurations.

Objective Evaluate performance related tests under varying workload.

The following performance measurements will be tested:

• response times for each of the public methods of the SWA
through a web service call;

• response times for each of the public methods of the EA
through a web service call.

Tool(s) used Apache JMeter

Success criteria Met the performance requirement.

2.3.5. Stress- and Volume Testing
Stress- and volume testing is a type of performance test to understand how (or if) a system
fails due to conditions at the boundary, or outside of it. For example, a large amount of
requests are performed in a short time-frame from multiple clients. In case of stress testing,
this typically involves low resources or competition for resources. Low resource conditions
reveal how the target-of-test fails that is not apparent under normal conditions.

Objective Determine the behaviour under a large amount of requests
from different clients.

Determine the behaviour under a low assignment of RAM.

Tool(s) used Apache JMeter

Success criteria The EF will be still operational and when problems do occur
meaningful error messages will be generated by the core of
the EF.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 17/38

2.3.6. Configuration Testing
This type of test evaluates how the core of the EF behaves when executed with unexpected
or wrong configuration settings provided.

Objective Evaluate the behaviour of the EF, and components of it, when
executed with unexpected or wrong configuration settings
provided.

Tool(s) used A locally installed version of the EF.

Success criteria The EF, or relevant components of the EF, should be able to
be terminated by the test user and produce meaningful error
messages after incorrect configuration settings have been
provided.

2.3.7. Installation Testing
Installation testing ensures that the deployment and installation of the EF software package
works as expected.

The following will be taken into account during installation testing of the EF:

• ensure that the software can be installed under different conditions such as a clean
installation, or an installation in a directory in which a copy of the EF already exists;

• evaluate the behaviour of the EF when installing on a location with insufficient disk
space;

• observe what happens after installing on a location with lack of privileges;

• verify that the software can be started after installation.

Objective Evaluate the behaviour of the EF under specific or even
unexpected system environment scenarios.

Tool(s) used The EF installer (part of EF release 1.0.0).

Success criteria Installation is successful, or if not, exit or wait with a
meaningful error message.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 18/38

3. Test results
This chapter contains the test results of the tests that were outlined in chapter 2. The result
of each type of test is explained here.

3.1. Data Integrity Test Results

Objective Verify that no data corruption takes place after rendering a
digital object, or extracting software from the database.

Tool(s) used - Windows XP’s comp16 command which compares the
contents of two (or more) files byte-by-byte

- H2 database

- WinImage

Success criteria A copy of the rendered file is byte-by-byte identical after
rendering. An emulator, or software image, is byte-by-byte
identical after extracting it from the database.

3.1.1. Rendered digital object
After rendering a digital object using `start(FILE)`, the FILE is wrapped in a disk image which
in its turn is launched together with the emulator. When terminating the emulator and
extracting the FILE using WinImage, the `comp` utility was used to see if the file was still the
same as the original.

Tests were performed with two types of files:

1. flat ASCII text file;

2. binary JPG image file.

Both files were emulated using Dioscuri with FreeDos and Qemu with Damn Small Linux,
both part of the 1.0.0 release of the EF. In all four cases, the original file was byte-by-byte the
same as the rendered file.

3.1.2. Emulator and Software package
All emulators in the EA, and all software packages in the SWA have been extracted with the
following SQL queries:

16 http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-
us/comp.mspx

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 19/38

• SELECT package FROM emulatorarchive.emulators

• SELECT image FROM softwarearchive.imageblobs

Both these queries return a BLOB (a binary large object). These BLOBs were then compared
to the original files located in the directories:

• EmulatorArchive/packages/emulators/

• SoftwareArchive/packages/

In all cases, there was no difference: they were 100% byte-by-byte equivalent.

3.1.3. Conclusion
Nor rendered objects, or the software- or emulator packages provided by the EF are
changed in any way by the EF, or one of its components.

3.2. Functional Test Results

Objective Verify all system functional requirements.

Tool(s) used JUnit, Apache Ant

Success criteria All of the Mandatory requirements are implemented and pass
their unit tests.

3.2.1. Mandatory requirements
All mandatory requirements are defined in deliverable 2.2a17.

The public API is formed by all system functions (methods) of the EF. The full list of functions
can be found in appendix B of this document. The API is the public interface to be used by
other developers to be able to incorporate the EF core in their own software (e.g. a GUI or
technical registry).

In the following table each mandatory requirement is stated with the resulting implementation
in the EF.

Require
ment #

Description Result Requirement
fulfilled

F2.1 The EF should offer an API
for accepting digital object
and metadata, preferably
standardized.

boolean start(
 File file,
 File metadata
)

yes

17 Requirements and design documents for services and architecture of emulation framework, D2.2a,
April 2010.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 20/38

Require
ment #

Description Result Requirement
fulfilled

F2.2 The EF API should acknowledge
the receipt of the digital object
and metadata

The start method returns a boolean
value for this purpose.

yes

F2.3 Given an atomic digital object
and metadata, the EF should be
able to connect to one or more
technical registries to generate
a list of possible emulation
pathways

This is done by several method
calls: a) the file needs to
characterized; b) a certain file
format can produce multiple
pathways:

a) List<Format> characterise(File
digObj)

b) List<Pathway>
getPathways(Format format)

yes

F3.1 The EF should be able to run at
least three types of emulators

Release 1.0.0 contains 6 emulators:
Dioscuri, Qemu, VICE, UAE,
BeebEm and JavaCPC. Calling
start(FILE), where FILE is a local
file will launch the proper emulator,
assuming FILE is known in the EF
database.

yes

F3.2 The EF should be able to run at
least one Java-based emulator

Both Dioscuri and JavaCPC are
emulators written in Java.

yes

F3.3 The EF should be able to run at
least one KVM-based emulator

The EF is already capable of
running any emulator that can be
invoked via the command line. At
the time of writing of this
document, it was not yet possible
to test integration of the EF with
the KVM version of the C64
emulator VICE. This will be carried
out before the end of the project.

partly

F4.1 EF should be able to prepare a
'software package' based on
available pathway, digital object
and any additional metadata

This can be done in 3 steps: a) get
the file format of a digital object; b)
get the possible pathways for a
particular file format; c) get a list of
software packages for a particular
pathway.

a) List<Format> characterise(File
digObj)

b) List<Pathway>
getPathways(Format format)

c) List<SoftwarePackage>
getSoftwareByPathway(Pathway
pathway)

yes

F4.2 EF should be able to handle at
least two types of atomic digital
objects

Release 1.0.0 of the EF support the
rendering of 21 atomic objects:

Amiga Disk Image, Amstrad Tape
Image, Amstrad Disk Image, BBC
Micro Image, Commodore C64 Tape
Image, Commodore C64 Disk
Image, Portable Document Format,
Extensible Markup Language, Plain
text, JPEG File Interchange Format,

yes

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 21/38

Require
ment #

Description Result Requirement
fulfilled

Windows Bitmap, Graphics
Interchange Format, Tagged Image
File Format, Portable Network
Graphics, Hypertext Markup
Language, WordPerfect for MS-
DOS/Windows Document, Microsoft
Word, Motorola Quark Express
Document, ARJ archive data, LHarc
1.x/ARX archive data [lh0],
DOS/Windows executable and ISO
9660 CD-ROM.

F4.6 EF should be able to display the
atomic digital object in the
emulated environment

The method start(FILE), where FILE
is a file format of any of the 21
listed in F4.2, will cause the
appropriate emulator to be
launched.

yes

F4.8 EF should be able to configure
the selected emulator

The method start(FILE), where FILE
is a file format of any of the 21
listed above, will cause the
appropriate emulator to properly
configured and launched.

yes

F5.1 The end-user should be able to
start and stop emulation
processes

This can be done by calling either:

- boolean start(File file)
or
- boolean stop()

yes

F5.3 The end-user should not be
required to configure the
emulation process, i.e. the EF
provides a default configuration

See F4.8 yes

F5.12 The administrator should be
able to configure the connection
to the technical registries

This can be done in the
user.properties file.

yes

F5.13 The administrator should be
able to configure the amount of
information displayed to the
end-user

This can be done in the
log4j.properties file.

yes

Using Apache Ant, the task “test.report” can be executed which performs black box tests on
all public, protected and package protected methods in the EF core, including all method
calls in the table above. It will also produce an HTML report inside build-directory that shows
all tests passed without failures or errors.

3.2.2. Conclusion
All mandatory functional requirements are implemented except F3.3 (running an KVM based
emulator). To accomplish F3.3 the EF development team is working closely with the KVM
development team. All implemented requirements also pass their unit tests without warnings,
or errors.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 22/38

3.3. Usability Test Results

Objective Verify the EF fulfils the end-user’s expectations or collect
features it currently lacks.

Tool(s) used Hold workshops and collect feedback from end-users.

Test at the National Archives of the Netherlands with a couple
of digital objects from their collection.

Test at the National Library of the Netherlands (KB) with a
couple of digital objects from their collection.

Success criteria No feedback (all expectations were met), or features to
incorporate in the EF.

3.3.1. Results from workshops and tests
Workshops have been organised to let interested people get acquainted with the EF and
what it could do for them in their organisation. At the end of these workshops, and during
performed demo's of the EF, feedback was collected. Data from the following workshops
were used in this test report:

• Paris workshop – 23 September 2011;

• The Hague workshop – 27 October 2011;

• Rome workshop – 30 November 2011.

Besides these workshops, both the National Archives of the Netherlands (NA henceforth),
and The National Library of the Netherlands (KB henceforth) performed tests with digital
objects from their collections.

Below is a table of remarks and recommendations gathered from these workshops and tests.
In the meantime, a new version of the EF (1.1.0)18 has been released that implements some
of the remarks/wishes. Furthermore, version 2.0.0 is in preparation and might include the
other remarks that did not make it in 1.1.0. This is indicated in the table below as well.

Remark/wish Implemented

in 1.1.0
Possibly in

2.0.0

Add user feedback on rendering environment for selecting
the best emulated environment.

- -

Add language preference for emulated environment. This
can be used to auto select the native language in the
rendered environment so that the user gets the preferred

Yes -

18 KEEP EF version 1.1.0, software available at: http://emuframework.sf.net

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 23/38

Remark/wish Implemented
in 1.1.0

Possibly in
2.0.0

language in the software.

Give extra support to the user about the emulated
environment. Example: which command should be entered
in a command-line environment.

yes -

Ensure complex objects can be run (such as CD-ROMs,
websites, folders with multiple files in them).

- yes

Auto select the host platform (native MS
Windows/Linux/MacOS) so that the EF only shows the
environments that actually can run on the computer of the
user.

yes -

Define separated admin and user roles.

yes -

Integrate emulator from SIMH emulation project into EF.

- yes

Start emulators and software without selecting a digital file
first.

- yes

Add original software documentation and external
references (web addresses) to support to the user.

yes -

Error messages are not always clear.

work in
progress

yes

Double-click on file to auto run.

yes -

Identification of files is not always correct, in such cases,
letting the end-user provide a file format would be helpful.

- yes

Easier addition of software packages and emulators in the
SWA and EA.

yes -

Possibility, or a manual that explains how to integrate the
EF with an existing repository.

- -

3.3.2. Conclusion
The first release of the EF (1.0.0) is a decent prototype which includes a solid amount of
features. But during the workshops, and tests at NA and KB, one remark/wish came back:
there is a real need for the EF to be able to render complex digital objects, such as websites
and multimedia software.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 24/38

3.4. Performance Test Results

Objective Determine the behaviour under varying workload.

Tool(s) used Apache JMeter

Success criteria Met the performance requirement.

3.4.1. Setup
As the biggest performance challenge lies between the interaction of EF with the web
services EA and SWA, the test focused on the performance of retrieving software and
emulators from the archives to the EF. The following setup was used:

• both archives ran on a Virtualized Windows 2008 server edition, with 512 Megabytes of
RAM assigned each, and 4 (virtual) processors available on the Windows 2008 server;

• in the same 1 Gbit LAN, 4 JMeter clients (all on Windows XP PC's) with 100 Mbit
Ethernet adapter were setup to perform the web service requests to both the EA and
SWA;

• in the same 1 Gbit LAN, 1 PC with 100 Mbit Ethernet adapter instructed all the 4
JMeter clients to tell them what, and when, to request from the EA and SWA.

The JMeter profile is provided in Appendix A, which can be used to reproduce the tests. Note
that the profile XML file assumes the EA and SWA are running on http://keep.wpakb.kb.nl
through ports 9000 and 9001. These settings will need to be adjusted if the host and/or ports
differ, of course.

Each of the four clients were instructed to call the following public methods from the EA and
SWA with varying times in between the requests:

method archive # MB returned

DownloadEmulator EA 2

GetEmulatorPackage EA < 1

GetEmulatorPackageList EA < 1

GetEmusByHardware EA < 1

GetSupportedHardware EA < 1

DownloadSoftware SWA 50

GetAllSoftwarePackagesInfo SWA < 1

GetPathwaysByFileFormat SWA < 1

GetSoftwarePackageInfo SWA < 1

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 25/38

3.4.2. Results
In the table below is a list of average return times of each of the public methods of the EA
and SWA during a period of 15 minutes of continued requests:

EF function (method) pause between requests

(sec.)
average response

(ms.)
DownloadEmulator 10 500
 5 500
 1 800
GetEmulatorPackage 10 < 10
 5 < 10
 1 < 10
GetEmulatorPackageList 10 < 10
 5 < 10
 1 < 10
GetEmusByHardware 10 < 10
 5 < 10
 1 < 10
GetSupportedHardware 10 < 10
 5 < 10
 1 < 10
DownloadSoftware 10 2800
 5 3100
 1 4000
GetAllSoftwarePackagesInfo 10 < 10
 5 < 10
 1 < 10
GetPathwaysByFileFormat 10 < 10
 5 < 10
 1 < 10

Changing the parameters to the called methods into invalid ones (i.e. if a method expects a
number, provide a string instead), did not result in any unwanted behaviour. The web
services simply returned an error message stating the parameter was incorrect.

3.4.3. Conclusion
Most of the public methods from the EA and SWA returned what they are supposed to return
in less than 10 milliseconds. Downloading an emulator every second still did not exceed
more than 1 second in response. Only the Linux package took a bit longer (~4 seconds)
when requesting it once every second from each of the 4 clients. But this is still an
acceptable time.

3.5. Stress- and Volume Test Results

Objective Determine the behaviour under a large amount of requests to
the EA and SWA from different clients.

Determine the behaviour under a low assignment of RAM.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 26/38

Tool(s) used Apache JMeter

Success criteria No error messages, or when problems do occur, meaningful
error messages.

3.5.1. Large amount of requests
See performance test results.

3.5.2. Low memory
Running the same test outlined in 3.4, but then assigning less than 64 MB of RAM to each of
the archives, caused the SWA to terminate with a OutOfMemoryException in its log files. The
EA had no such problems: it ran in more or less the same time as indicated in 3.4.

3.5.3. Conclusion
The total amount of memory assigned to each of the EA and SWA archives needs to be at
least 64 MB of RAM. Preferably at least as much RAM as the largest image in its archive is.
So if there is an image containing Windows 98 with MS Office included, totalling 200 MB,
then the RAM is recommended to be at least 256 MB for the SWA. This could become an
issue if an image of more than 8 GB is managed by the SWA. But in practice, images are
compressed and it is not likely to transfer images of that size. Nevertheless, administrators
should be made aware of these kind of limitations.

3.6. Configuration Test Results

Objective Determine if the EF, or components of it, produce meaningful
messages after providing incorrect configuration settings, and
observe if the EF terminates in a proper way (no crashes).

Tool(s) used A locally installed version of the EF. Embedded H2 database.

Success criteria Meaningful error messages after providing invalid settings.

3.6.1. Results
setting resulting in

Invalid username and/or
password to internal database

5 retries and then an expected message:

java.io.IOException: Multiple connection attempts to
database failed: org.h2.jdbc.JdbcSQLException: Wrong
user name or password [8004-133]
 ...

Invalid internal database
name

5 retries and then an expected message:

Database
"/home/bart/Documents/KEEP/EF110/database/h2/EF_e
ngineE" not found [90013-133]

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 27/38

 ...
Invalid EA or SWA web
address (URL)

Results in the following error message:

EmulatorArchive or SoftwareArchive could not be
contacted.

If in admin mode, an invalid
username and/or password

5 retries and then an expected message:

java.io.IOException: Multiple connection attempts to
database failed: org.h2.jdbc.JdbcSQLException: Wrong
user name or password [8004-133]
 ...

3.6.2. Conclusion
Purposely providing incorrect information for those settings that are mandatory for the EF to
operate properly results in the EF to gracefully exit with meaningful error messages.

3.7. Installation Test Results

Objective Observe the behaviour when installing the EF under varying
circumstances.

Tool(s) used The EF installer.

Success criteria Installation is successful, or if not, exit or wait with a
meaningful error message.

3.7.1. Installation without sufficient rights
Trying to install the EF in a directory without sufficient rights, produces the following error:

The installation process does not terminate, but remains at the present step: it waits for a
valid installation directory.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 28/38

3.7.2. Installation while another installation is running
When trying to run the EF-installer while another instance of the installer is already running,
produces the following warning:

I.e., the installation can continue, but the installer warns the user about this.

3.7.3. Installation on a USB stick without sufficient space
When trying to install the EF on a disk without sufficient space, the following error is
produced:

The installation process does not terminate, but remains at the present step: it waits for a
valid installation directory.

3.7.4. A valid installation
Installing the EF on a disk with enough free space, and with proper user rights to perform the
installation, results in a proper installation. The EF can be launched by running either the
`runEF.bat` or `runEF.sh` file (assuming there is a EA- and SWA running on `localhost`, or
another location).

3.7.5. Conclusion
The installer produces meaningful warnings, or error messages, and does not crash when
trying to do something invalid. After a valid installation, the EF is launched without a problem.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 29/38

4. Conclusions and recommendations
The EF withstood all performed tests successfully. In short, the EF proved to:

√ be reliable as it does not change the bytes of digital objects or software;

√ meet all but one of the mandatory requirements defined by the project;

√ satisfy the user’s expectations during the workshops and user tests;

√ have good performance in interaction with the SWA and EA;

√ perform well under difficult circumstances such as low memory or many requests;

√ behave well when wrong configuration entries are done;

√ come with a solid installer.

The EF did not fully meet the requirement on the ability to run at least one KVM-based
emulator. This will be solved before the end of the KEEP project. Apart from that, no major
shortcomings were identified.

Several useful recommendations were given during the workshops and tests:

• support for complex objects (e.g. websites, multimedia applications) by the EF;

• add language preference for emulated environment;

• give extra support to the user about the emulated environment;

• auto select the host platform (native MS Windows/Linux/MacOS);

• define separated admin and user roles;

• integrate emulator from SIMH emulation project into EF;

• start emulators and software without selecting a digital file first;

• add original software documentation and external references (web addresses) to
support to the user;

• error messages are not always clear and should be improved;

• double-click on file to auto run an emulated environment;

• identification of files is not always correct, in such cases, letting the end-user
provide a file format would be helpful;

• easier addition of software packages and emulators in the SWA and EA;

• possibility, or a manual, that explains how to integrate the EF with an existing
repository.

The recently released version 1.1.0 of the EF already incorporates many of the
recommended improvements to the EF. The final version of the KEEP EF (2.0.0) is expected
to cover even more.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 30/38

Appendix A: Jmeter test profile
<jmeterTestPlan version="1.2" properties="2.1">

<hashTree>

<TestPlan guiclass="TestPlanGui" testclass="TestPlan" testname="Test Plan" enabled="true">

<stringProp name="TestPlan.comments"/>

<boolProp name="TestPlan.functional_mode">false</boolProp>

<boolProp name="TestPlan.serialize_threadgroups">false</boolProp>

<elementProp name="TestPlan.user_defined_variables" elementType="Arguments" guiclass="ArgumentsPanel"
testclass="Arguments" testname="User Defined Variables" enabled="true">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="TestPlan.user_define_classpath"/>

</TestPlan>

<hashTree>

<ThreadGroup guiclass="ThreadGroupGui" testclass="ThreadGroup" testname="KEEP webservice users/connections"
enabled="true">

<stringProp name="ThreadGroup.on_sample_error">continue</stringProp>

<elementProp name="ThreadGroup.main_controller" elementType="LoopController" guiclass="LoopControlPanel"
testclass="LoopController" testname="Loop Controller" enabled="true">

<boolProp name="LoopController.continue_forever">false</boolProp>

<intProp name="LoopController.loops">-1</intProp>

</elementProp>

<stringProp name="ThreadGroup.num_threads">4</stringProp>

<stringProp name="ThreadGroup.ramp_time">5</stringProp>

<longProp name="ThreadGroup.start_time">1317806375000</longProp>

<longProp name="ThreadGroup.end_time">1317806375000</longProp>

<boolProp name="ThreadGroup.scheduler">false</boolProp>

<stringProp name="ThreadGroup.duration"/>

<stringProp name="ThreadGroup.delay"/>

</ThreadGroup>

<hashTree>

<WebServiceSampler guiclass="WebServiceSamplerGui" testclass="WebServiceSampler" testname="ea :: DownloadEmulator"
enabled="true">

<elementProp name="HTTPsampler.Arguments" elementType="Arguments">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="HTTPSampler.domain">keep.wpakb.kb.nl</stringProp>

<stringProp name="HTTPSampler.port">9001</stringProp>

<stringProp name="HTTPSampler.protocol">http</stringProp>

<stringProp name="HTTPSampler.path">/emulatorarchive/</stringProp>

<stringProp name="WebserviceSampler.wsdl_url">http://keep.wpakb.kb.nl:9001/emulatorarchive?wsdl</stringProp>

<stringProp name="HTTPSampler.method">POST</stringProp>

<stringProp name="Soap.Action">urn:DownloadEmulator</stringProp>

<stringProp name="HTTPSamper.xml_data">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:emul="http://emulatorarchive.keep.eu"> <soapenv:Header/> <soapenv:Body>
<emul:emulatorID_2>3</emul:emulatorID_2> </soapenv:Body> </soapenv:Envelope>-

</stringProp>

<stringProp name="WebServiceSampler.xml_data_file"/>

<stringProp name="WebServiceSampler.xml_path_loc"/>

<stringProp name="WebserviceSampler.timeout"/>

<stringProp name="WebServiceSampler.memory_cache">true</stringProp>

<stringProp name="WebServiceSampler.read_response">true</stringProp>

<stringProp name="WebServiceSampler.use_proxy">false</stringProp>

<stringProp name="WebServiceSampler.proxy_host"/>

<stringProp name="WebServiceSampler.proxy_port"/>

</WebServiceSampler>

<hashTree/>

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 31/38

<WebServiceSampler guiclass="WebServiceSamplerGui" testclass="WebServiceSampler" testname="ea ::
GetEmulatorPackage" enabled="true">

<elementProp name="HTTPsampler.Arguments" elementType="Arguments">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="HTTPSampler.domain">keep.wpakb.kb.nl</stringProp>

<stringProp name="HTTPSampler.port">9001</stringProp>

<stringProp name="HTTPSampler.protocol">http</stringProp>

<stringProp name="HTTPSampler.path">/emulatorarchive/</stringProp>

<stringProp name="WebserviceSampler.wsdl_url">http://keep.wpakb.kb.nl:9001/emulatorarchive?wsdl</stringProp>

<stringProp name="HTTPSampler.method">POST</stringProp>

<stringProp name="Soap.Action">urn:GetEmulatorPackage</stringProp>

<stringProp name="HTTPSamper.xml_data">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:emul="http://emulatorarchive.keep.eu"> <soapenv:Header/> <soapenv:Body>
<emul:emulatorID_1>4</emul:emulatorID_1> </soapenv:Body> </soapenv:Envelope>

</stringProp>

<stringProp name="WebServiceSampler.xml_data_file"/>

<stringProp name="WebServiceSampler.xml_path_loc"/>

<stringProp name="WebserviceSampler.timeout"/>

<stringProp name="WebServiceSampler.memory_cache">true</stringProp>

<stringProp name="WebServiceSampler.read_response">true</stringProp>

<stringProp name="WebServiceSampler.use_proxy">false</stringProp>

<stringProp name="WebServiceSampler.proxy_host"/>

<stringProp name="WebServiceSampler.proxy_port"/>

</WebServiceSampler>

<hashTree/>

<WebServiceSampler guiclass="WebServiceSamplerGui" testclass="WebServiceSampler" testname="ea ::
GetEmulatorPackageList" enabled="true">

<elementProp name="HTTPsampler.Arguments" elementType="Arguments">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="HTTPSampler.domain">keep.wpakb.kb.nl</stringProp>

<stringProp name="HTTPSampler.port">9001</stringProp>

<stringProp name="HTTPSampler.protocol">http</stringProp>

<stringProp name="HTTPSampler.path">/emulatorarchive/</stringProp>

<stringProp name="WebserviceSampler.wsdl_url">http://keep.wpakb.kb.nl:9001/emulatorarchive?wsdl</stringProp>

<stringProp name="HTTPSampler.method">POST</stringProp>

<stringProp name="Soap.Action">urn:GetEmulatorPackageList</stringProp>

<stringProp name="HTTPSamper.xml_data">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:emul="http://emulatorarchive.keep.eu"> <soapenv:Header/> <soapenv:Body>
<emul:dummyElement>0</emul:dummyElement> </soapenv:Body> </soapenv:Envelope>

</stringProp>

<stringProp name="WebServiceSampler.xml_data_file"/>

<stringProp name="WebServiceSampler.xml_path_loc"/>

<stringProp name="WebserviceSampler.timeout"/>

<stringProp name="WebServiceSampler.memory_cache">true</stringProp>

<stringProp name="WebServiceSampler.read_response">true</stringProp>

<stringProp name="WebServiceSampler.use_proxy">false</stringProp>

<stringProp name="WebServiceSampler.proxy_host"/>

<stringProp name="WebServiceSampler.proxy_port"/>

</WebServiceSampler>

<hashTree/>

<WebServiceSampler guiclass="WebServiceSamplerGui" testclass="WebServiceSampler" testname="ea ::
GetEmusByHardware" enabled="true">

<elementProp name="HTTPsampler.Arguments" elementType="Arguments">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="HTTPSampler.domain">keep.wpakb.kb.nl</stringProp>

<stringProp name="HTTPSampler.port">9001</stringProp>

<stringProp name="HTTPSampler.protocol">http</stringProp>

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 32/38

<stringProp name="HTTPSampler.path">/emulatorarchive/</stringProp>

<stringProp name="WebserviceSampler.wsdl_url">http://keep.wpakb.kb.nl:9001/emulatorarchive?wsdl</stringProp>

<stringProp name="HTTPSampler.method">POST</stringProp>

<stringProp name="Soap.Action">urn:GetEmusByHardware</stringProp>

<stringProp name="HTTPSamper.xml_data">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:emul="http://emulatorarchive.keep.eu"> <soapenv:Header/> <soapenv:Body>
<emul:hardwareID>x86</emul:hardwareID> </soapenv:Body> </soapenv:Envelope>

</stringProp>

<stringProp name="WebServiceSampler.xml_data_file"/>

<stringProp name="WebServiceSampler.xml_path_loc"/>

<stringProp name="WebserviceSampler.timeout"/>

<stringProp name="WebServiceSampler.memory_cache">true</stringProp>

<stringProp name="WebServiceSampler.read_response">true</stringProp>

<stringProp name="WebServiceSampler.use_proxy">false</stringProp>

<stringProp name="WebServiceSampler.proxy_host"/>

<stringProp name="WebServiceSampler.proxy_port"/>

</WebServiceSampler>

<hashTree/>

<WebServiceSampler guiclass="WebServiceSamplerGui" testclass="WebServiceSampler" testname="ea ::
GetSupportedHardware" enabled="true">

<elementProp name="HTTPsampler.Arguments" elementType="Arguments">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="HTTPSampler.domain">keep.wpakb.kb.nl</stringProp>

<stringProp name="HTTPSampler.port">9001</stringProp>

<stringProp name="HTTPSampler.protocol">http</stringProp>

<stringProp name="HTTPSampler.path">/emulatorarchive/</stringProp>

<stringProp name="WebserviceSampler.wsdl_url">http://keep.wpakb.kb.nl:9001/emulatorarchive?wsdl</stringProp>

<stringProp name="HTTPSampler.method">POST</stringProp>

<stringProp name="Soap.Action">urn:GetSupportedHardware</stringProp>

<stringProp name="HTTPSamper.xml_data">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:emul="http://emulatorarchive.keep.eu"> <soapenv:Header/> <soapenv:Body> <emul:dummyElement_2/>
</soapenv:Body> </soapenv:Envelope>

</stringProp>

<stringProp name="WebServiceSampler.xml_data_file"/>

<stringProp name="WebServiceSampler.xml_path_loc"/>

<stringProp name="WebserviceSampler.timeout"/>

<stringProp name="WebServiceSampler.memory_cache">true</stringProp>

<stringProp name="WebServiceSampler.read_response">true</stringProp>

<stringProp name="WebServiceSampler.use_proxy">false</stringProp>

<stringProp name="WebServiceSampler.proxy_host"/>

<stringProp name="WebServiceSampler.proxy_port"/>

</WebServiceSampler>

<hashTree/>

<WebServiceSampler guiclass="WebServiceSamplerGui" testclass="WebServiceSampler" testname="swa ::
DownloadSoftware" enabled="true">

<elementProp name="HTTPsampler.Arguments" elementType="Arguments">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="HTTPSampler.domain">keep.wpakb.kb.nl</stringProp>

<stringProp name="HTTPSampler.port">9000</stringProp>

<stringProp name="HTTPSampler.protocol">http</stringProp>

<stringProp name="HTTPSampler.path">/softwarearchive/</stringProp>

<stringProp name="WebserviceSampler.wsdl_url">http://keep.wpakb.kb.nl:9000/softwarearchive?wsdl</stringProp>

<stringProp name="HTTPSampler.method">POST</stringProp>

<stringProp name="Soap.Action">urn:DownloadSoftware</stringProp>

<stringProp name="HTTPSamper.xml_data">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sof="http://softwarearchive.keep.eu"> <soapenv:Header/> <soapenv:Body> <sof:softwareID_2>IMG-
1001</sof:softwareID_2> </soapenv:Body> </soapenv:Envelope>

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 33/38

</stringProp>

<stringProp name="WebServiceSampler.xml_data_file"/>

<stringProp name="WebServiceSampler.xml_path_loc"/>

<stringProp name="WebserviceSampler.timeout"/>

<stringProp name="WebServiceSampler.memory_cache">true</stringProp>

<stringProp name="WebServiceSampler.read_response">true</stringProp>

<stringProp name="WebServiceSampler.use_proxy">false</stringProp>

<stringProp name="WebServiceSampler.proxy_host"/>

<stringProp name="WebServiceSampler.proxy_port"/>

</WebServiceSampler>

<hashTree/>

<WebServiceSampler guiclass="WebServiceSamplerGui" testclass="WebServiceSampler" testname="swa ::
GetAllSoftwarePackagesInfo" enabled="true">

<elementProp name="HTTPsampler.Arguments" elementType="Arguments">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="HTTPSampler.domain">keep.wpakb.kb.nl</stringProp>

<stringProp name="HTTPSampler.port">9000</stringProp>

<stringProp name="HTTPSampler.protocol">http</stringProp>

<stringProp name="HTTPSampler.path">/softwarearchive/</stringProp>

<stringProp name="WebserviceSampler.wsdl_url">http://keep.wpakb.kb.nl:9000/softwarearchive?wsdl</stringProp>

<stringProp name="HTTPSampler.method">POST</stringProp>

<stringProp name="Soap.Action">urn:GetAllSoftwarePackagesInfo</stringProp>

<stringProp name="HTTPSamper.xml_data">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sof="http://softwarearchive.keep.eu"> <soapenv:Header/> <soapenv:Body>
<sof:dummyElement_1>1</sof:dummyElement_1> </soapenv:Body> </soapenv:Envelope>

</stringProp>

<stringProp name="WebServiceSampler.xml_data_file"/>

<stringProp name="WebServiceSampler.xml_path_loc"/>

<stringProp name="WebserviceSampler.timeout"/>

<stringProp name="WebServiceSampler.memory_cache">true</stringProp>

<stringProp name="WebServiceSampler.read_response">true</stringProp>

<stringProp name="WebServiceSampler.use_proxy">false</stringProp>

<stringProp name="WebServiceSampler.proxy_host"/>

<stringProp name="WebServiceSampler.proxy_port"/>

</WebServiceSampler>

<hashTree/>

<WebServiceSampler guiclass="WebServiceSamplerGui" testclass="WebServiceSampler" testname="swa ::
GetPathwaysByFileFormat" enabled="true">

<elementProp name="HTTPsampler.Arguments" elementType="Arguments">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="HTTPSampler.domain">keep.wpakb.kb.nl</stringProp>

<stringProp name="HTTPSampler.port">9000</stringProp>

<stringProp name="HTTPSampler.protocol">http</stringProp>

<stringProp name="HTTPSampler.path">/softwarearchive/</stringProp>

<stringProp name="WebserviceSampler.wsdl_url">http://keep.wpakb.kb.nl:9000/softwarearchive?wsdl</stringProp>

<stringProp name="HTTPSampler.method">POST</stringProp>

<stringProp name="Soap.Action">urn:GetPathwaysByFileFormat</stringProp>

<stringProp name="HTTPSamper.xml_data">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sof="http://softwarearchive.keep.eu"> <soapenv:Header/> <soapenv:Body> <sof:fileFormat>ISO 9660 CD-
ROM</sof:fileFormat> </soapenv:Body> </soapenv:Envelope>

</stringProp>

<stringProp name="WebServiceSampler.xml_data_file"/>

<stringProp name="WebServiceSampler.xml_path_loc"/>

<stringProp name="WebserviceSampler.timeout"/>

<stringProp name="WebServiceSampler.memory_cache">true</stringProp>

<stringProp name="WebServiceSampler.read_response">true</stringProp>

<stringProp name="WebServiceSampler.use_proxy">false</stringProp>

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 34/38

<stringProp name="WebServiceSampler.proxy_host"/>

<stringProp name="WebServiceSampler.proxy_port"/>

</WebServiceSampler>

<hashTree/>

<WebServiceSampler guiclass="WebServiceSamplerGui" testclass="WebServiceSampler" testname="swa ::
GetSoftwarePackageInfo" enabled="true">

<elementProp name="HTTPsampler.Arguments" elementType="Arguments">

<collectionProp name="Arguments.arguments"/>

</elementProp>

<stringProp name="HTTPSampler.domain">keep.wpakb.kb.nl</stringProp>

<stringProp name="HTTPSampler.port">9000</stringProp>

<stringProp name="HTTPSampler.protocol">http</stringProp>

<stringProp name="HTTPSampler.path">/softwarearchive/</stringProp>

<stringProp name="WebserviceSampler.wsdl_url">http://keep.wpakb.kb.nl:9000/softwarearchive?wsdl</stringProp>

<stringProp name="HTTPSampler.method">POST</stringProp>

<stringProp name="Soap.Action">urn:GetSoftwarePackageInfo</stringProp>

<stringProp name="HTTPSamper.xml_data">

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:sof="http://softwarearchive.keep.eu"> <soapenv:Header/> <soapenv:Body> <sof:softwareID_1>IMG-
1001</sof:softwareID_1> </soapenv:Body> </soapenv:Envelope>

</stringProp>

<stringProp name="WebServiceSampler.xml_data_file"/>

<stringProp name="WebServiceSampler.xml_path_loc"/>

<stringProp name="WebserviceSampler.timeout"/>

<stringProp name="WebServiceSampler.memory_cache">true</stringProp>

<stringProp name="WebServiceSampler.read_response">true</stringProp>

<stringProp name="WebServiceSampler.use_proxy">false</stringProp>

<stringProp name="WebServiceSampler.proxy_host"/>

<stringProp name="WebServiceSampler.proxy_port"/>

</WebServiceSampler>

<hashTree/>

<ResultCollector guiclass="GraphVisualizer" testclass="ResultCollector" testname="Graph Results" enabled="true">

<boolProp name="ResultCollector.error_logging">false</boolProp>

<objProp>

<name>saveConfig</name>

<value class="SampleSaveConfiguration">

<time>true</time>

<latency>true</latency>

<timestamp>true</timestamp>

<success>true</success>

<label>true</label>

<code>true</code>

<message>true</message>

<threadName>true</threadName>

<dataType>true</dataType>

<encoding>false</encoding>

<assertions>true</assertions>

<subresults>true</subresults>

<responseData>false</responseData>

<samplerData>false</samplerData>

<xml>true</xml>

<fieldNames>false</fieldNames>

<responseHeaders>false</responseHeaders>

<requestHeaders>false</requestHeaders>

<responseDataOnError>false</responseDataOnError>

<saveAssertionResultsFailureMessage>false</saveAssertionResultsFailureMessage>

<assertionsResultsToSave>0</assertionsResultsToSave>

<bytes>true</bytes>

</value>

</objProp>

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 35/38

<stringProp name="filename">C:\Apps\jmeter\bin\data.csv</stringProp>

</ResultCollector>

<hashTree/>

</hashTree>

</hashTree>

</hashTree>

</jmeterTestPlan>

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 36/38

Appendix B: list of EF 1.0.0 system functions (methods)

autoSelectEmulator(List<EmulatorPackage> emuPacks)
 Select an emulator automatically from a list of emulators The selection process picks
the first encountered emulator that can run on the current host system

autoSelectFormat(List<Format> formats)
 Select a format from a list of formats.

autoSelectPathway(List<Pathway> pathways)
 Select a valid pathway automatically from a list of potential pathways The selection
process simply picks the first encountered satisfiable pathway

autoSelectSoftwareImage(List<SoftwarePackage> swPacks)
 Select a software image automatically from a list of software images.

characterise(File digObj)
 Characterise a digital object and returns information on format names, mime types
and the reporting tools.

cleanUp()
 Clean up any temporary files and directories that were created by the Core Engine to
unpack files, run emulators, etc.

extractPathwayFromFile(File metadataFile)
 Retrieve the technical environment, i.e.

getCoreSettings()
 Get the Core Engine settings

getEmuConfig(Integer conf)
 Get the configuration map of all available emulator parameters Useful for manual
configuration of the emulator, to be used with setEmuConfig()

getEmulatorsByPathway(Pathway pathway)
 Returns a list of supported emulators that satisfy a given pathway.

getEmuListFromArchive()
 Get the list of all emulator packages available in the Emulator Archive

getEmusByHWFromArchive(String hardwareName)
 Get the list of emulator packages that support a hardware type in the emulator archive

getFileInfo(File digObj)
 Characterise a digital object and returns file information

getPathways(Format format)
 Get pathways for a given file formatName.

getRegistries()
 Retrieve the list of technical registries

getSoftwareByPathway(Pathway pathway)
 Returns a list of supported software packages that satisfy a given pathway.

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 37/38

getSoftwareListFromArchive()
 Get all software packages available in the software archive

getSupportedHardwareFromArchive()
 Get the list of hardware supported by the Emulator Archive

getTechMetadata(File digObj)
 Characterise a digital object and returns technical metadata information

getTitle()
 Get the Emulation Framework title from the jar manifest

getVendor()
 Get the Emulation Framework vendor from the jar manifest

getVersion()
 Get the Emulation Framework version from the jar manifest

getWhitelistedEmus()
 Select the whitelisted emulator IDs from the local database

isPathwaySatisfiable(Pathway pathway)
 Checks if a given pathway is satisfiable given the available emulators and software
images

matchEmulatorWithSoftware(Pathway pathway)
 Match emulators with a list of associated software images from a given pathway

prepareConfiguration(File digObj, EmulatorPackage emuPack,
SoftwarePackage swPack, Pathway pathway)
 Prepares the configuration settings for the selected emulation process The resulting
configuration (emulator options) can be edited using setEmuOptions() and
getEmuOptions()

registerObserver(CoreObserver coreObs)
 Register an observer

removeObserver(CoreObserver coreObs)
 Remove an observer

runEmulationProcess(Integer conf)
 Run the chosen emulation process An emulator must have already been selected and
its configuration settings properly prepared.

setEmuConfig(Map<String,List<Map<String,String>>> options, Integer conf)
 Set the emulator parameters Useful for manual configuration of the emulator to be
used with getEmuConfig()

setRegistries(List<DBRegistry> listReg)
 Insert registry information from list into the local database This replaces all existing
registry information with the contents of the list

start(File file)
 Launches the emulation process automatically (i.e.

start(File file, File metadata)

D2.4 Test description and results document for Emulation Framework

KEEP_WP2_D2.4 38/38

 Launches the emulation process automatically (i.e.

start(File file, List<Pathway> pathways)
 Launches the emulation process given a digital object and a list of pathways to select
from.

start(File file, Pathway pathway)
 Launches the emulation process given a digital object and a specific pathway.

stop()
 Stop the Core Emulator Framework engine

unListEmulator(Integer i)
 Removes an emulator ID from the whitelist in the local database (list of emulators that
will be used for rendering a digital object)

whiteListEmulator(Integer i)
 Adds an emulator ID to the whitelist in the local database (list of emulators that will be
used for rendering a digital object)

